NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self, characteristic) |
def | card (self) |
def | getCharacteristic (self) |
def | order (self, elem) |
def | random_element (self, *args) |
def | primitive_element (self) |
def | Legendre (self, element) |
def | TonelliShanks (self, element) |
def | sqrt (self, element) |
![]() | |
def | __init__ (self) |
def | createElement (self, *args) |
def | isfield (self) |
def | gcd (self, a, b) |
def | getQuotientField (self) |
![]() | |
def | isdomain (self) |
def | isnoetherian (self) |
def | isufd (self) |
def | ispid (self) |
def | iseuclidean (self) |
def | registerModuleAction (self, action_ring, action) |
def | hasaction (self, action_ring) |
def | getaction (self, action_ring) |
![]() | |
def | createElement (self, seed) |
def | issubring (self, other) |
def | issuperring (self, other) |
def | getCommonSuperring (self, other) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __ne__ (self, other) |
Public Attributes | |
char | |
![]() | |
properties | |
Private Attributes | |
_orderfactor | |
The base class for all finite fields.
Definition at line 35 of file finitefield.py.
def nzmath.finitefield.FiniteField.__init__ | ( | self, | |
characteristic | |||
) |
Reimplemented in nzmath.finitefield.FinitePrimeField.
Definition at line 39 of file finitefield.py.
def nzmath.finitefield.FiniteField.card | ( | self | ) |
Reimplemented in nzmath.finitefield.ExtendedField, and nzmath.finitefield.FinitePrimeField.
Definition at line 47 of file finitefield.py.
Referenced by nzmath.finitefield.FiniteField.Legendre(), nzmath.finitefield.FiniteField.order(), nzmath.finitefield.FiniteField.sqrt(), and nzmath.finitefield.FiniteField.TonelliShanks().
def nzmath.finitefield.FiniteField.getCharacteristic | ( | self | ) |
Return the characteristic of the field.
Reimplemented from nzmath.ring.Ring.
Definition at line 51 of file finitefield.py.
References nzmath.finitefield.FiniteField.char.
Referenced by nzmath.finitefield.ExtendedField.__contains__().
def nzmath.finitefield.FiniteField.Legendre | ( | self, | |
element | |||
) |
Return generalize Legendre Symbol for FiniteField.
Reimplemented in nzmath.finitefield.FinitePrimeField.
Definition at line 87 of file finitefield.py.
References nzmath.finitefield.FiniteField.card(), nzmath.finitefield.FiniteField.char, nzmath.real.RealField.one, nzmath.poly.ring.PolynomialRing.one, nzmath.imaginary.ComplexField.one, nzmath.intresidue.IntegerResidueClassRing.one, nzmath.algfield.NumberField.one, nzmath.finitefield.FinitePrimeField.one, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.one, nzmath.ring.ResidueClassRing.one, nzmath.poly.ring.RationalFunctionField.one, nzmath.rational.RationalField.one, nzmath.finitefield.ExtendedField.one, nzmath.rational.IntegerRing.one, and nzmath.matrix.MatrixRing.one.
Referenced by nzmath.finitefield.FiniteField.TonelliShanks().
def nzmath.finitefield.FiniteField.order | ( | self, | |
elem | |||
) |
Find and return the order of the element in the multiplicative group of the field.
Definition at line 57 of file finitefield.py.
References nzmath.finitefield.FiniteField._orderfactor, nzmath.finitefield.FiniteField.card(), nzmath.real.RealField.one, nzmath.poly.ring.PolynomialRing.one, nzmath.imaginary.ComplexField.one, nzmath.intresidue.IntegerResidueClassRing.one, nzmath.algfield.NumberField.one, nzmath.finitefield.FinitePrimeField.one, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.one, nzmath.ring.ResidueClassRing.one, nzmath.poly.ring.RationalFunctionField.one, nzmath.rational.RationalField.one, nzmath.finitefield.ExtendedField.one, nzmath.rational.IntegerRing.one, and nzmath.matrix.MatrixRing.one.
Referenced by nzmath.poly.uniutil.DivisionProvider.__divmod__(), nzmath.poly.uniutil.DivisionProvider.__floordiv__(), nzmath.poly.uniutil.DivisionProvider.__mod__(), nzmath.poly.uniutil.DivisionProvider._populate_reduced(), nzmath.poly.uniutil.DivisionProvider._populate_reduced_more(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.distinct_degree_factorization(), nzmath.poly.uniutil.PseudoDivisionProvider.exact_division(), nzmath.poly.uniutil.DivisionProvider.extgcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.factor(), nzmath.poly.uniutil.DivisionProvider.gcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.isirreducible(), nzmath.poly.multiutil.NestProvider.leading_variable(), nzmath.poly.uniutil.DivisionProvider.mod(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_divmod(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_floordiv(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_mod(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_divmod(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_floordiv(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_mod(), nzmath.poly.uniutil.KaratsubaProvider.ring_mul_karatsuba(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.split_same_degrees(), nzmath.poly.uniutil.KaratsubaProvider.square_karatsuba(), and nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.squarefree_decomposition().
def nzmath.finitefield.FiniteField.primitive_element | ( | self | ) |
Return a primitive element of the field, i.e., a generator of the multiplicative group.
Reimplemented in nzmath.finitefield.ExtendedField, and nzmath.finitefield.FinitePrimeField.
Definition at line 80 of file finitefield.py.
def nzmath.finitefield.FiniteField.random_element | ( | self, | |
* | args | ||
) |
Return a randomly chosen element og the field.
Definition at line 74 of file finitefield.py.
References nzmath.lattice.Lattice.createElement(), nzmath.ring.Ring.createElement(), nzmath.group.Group.createElement(), nzmath.poly.ring.PolynomialRing.createElement(), nzmath.real.RealField.createElement(), nzmath.imaginary.ComplexField.createElement(), nzmath.intresidue.IntegerResidueClassRing.createElement(), nzmath.algfield.NumberField.createElement(), nzmath.finitefield.FinitePrimeField.createElement(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.createElement(), nzmath.rational.RationalField.createElement(), nzmath.permute.PermGroup.createElement(), nzmath.poly.ring.RationalFunctionField.createElement(), nzmath.finitefield.ExtendedField.createElement(), nzmath.rational.IntegerRing.createElement(), and nzmath.matrix.MatrixRing.createElement().
Referenced by nzmath.finitefield.FiniteField.TonelliShanks().
def nzmath.finitefield.FiniteField.sqrt | ( | self, | |
element | |||
) |
Return square root if exist.
Definition at line 145 of file finitefield.py.
References nzmath.finitefield.FiniteField.card(), nzmath.finitefield.FiniteField.char, nzmath.real.RealField.one, nzmath.poly.ring.PolynomialRing.one, nzmath.imaginary.ComplexField.one, nzmath.intresidue.IntegerResidueClassRing.one, nzmath.algfield.NumberField.one, nzmath.finitefield.FinitePrimeField.one, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.one, nzmath.ring.ResidueClassRing.one, nzmath.poly.ring.RationalFunctionField.one, nzmath.rational.RationalField.one, nzmath.finitefield.ExtendedField.one, nzmath.rational.IntegerRing.one, nzmath.matrix.MatrixRing.one, and nzmath.finitefield.FiniteField.TonelliShanks().
Referenced by nzmath.finitefield.FiniteField.TonelliShanks().
def nzmath.finitefield.FiniteField.TonelliShanks | ( | self, | |
element | |||
) |
Return square root of element if exist. assume that characteristic have to be more than three.
Definition at line 106 of file finitefield.py.
References nzmath.finitefield.FiniteField.card(), nzmath.finitefield.FiniteField.char, nzmath.lattice.Lattice.createElement(), nzmath.ring.Ring.createElement(), nzmath.group.Group.createElement(), nzmath.poly.ring.PolynomialRing.createElement(), nzmath.real.RealField.createElement(), nzmath.imaginary.ComplexField.createElement(), nzmath.intresidue.IntegerResidueClassRing.createElement(), nzmath.algfield.NumberField.createElement(), nzmath.finitefield.FinitePrimeField.createElement(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.createElement(), nzmath.rational.RationalField.createElement(), nzmath.permute.PermGroup.createElement(), nzmath.poly.ring.RationalFunctionField.createElement(), nzmath.finitefield.ExtendedField.createElement(), nzmath.rational.IntegerRing.createElement(), nzmath.matrix.MatrixRing.createElement(), nzmath.finitefield.FiniteField.Legendre(), nzmath.real.RealField.one, nzmath.poly.ring.PolynomialRing.one, nzmath.imaginary.ComplexField.one, nzmath.intresidue.IntegerResidueClassRing.one, nzmath.algfield.NumberField.one, nzmath.finitefield.FinitePrimeField.one, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.one, nzmath.ring.ResidueClassRing.one, nzmath.poly.ring.RationalFunctionField.one, nzmath.rational.RationalField.one, nzmath.finitefield.ExtendedField.one, nzmath.rational.IntegerRing.one, nzmath.matrix.MatrixRing.one, nzmath.finitefield.FiniteField.random_element(), and nzmath.finitefield.FiniteField.sqrt().
Referenced by nzmath.finitefield.FiniteField.sqrt().
|
private |
Definition at line 45 of file finitefield.py.
Referenced by nzmath.finitefield.FiniteField.order(), nzmath.finitefield.FinitePrimeField.primitive_element(), and nzmath.finitefield.ExtendedField.primitive_element().
nzmath.finitefield.FiniteField.char |
Definition at line 44 of file finitefield.py.
Referenced by nzmath.finitefield.FinitePrimeField.__contains__(), nzmath.finitefield.ExtendedField.__eq__(), nzmath.finitefield.FinitePrimeField.__hash__(), nzmath.finitefield.ExtendedField.__hash__(), nzmath.finitefield.FinitePrimeField.__repr__(), nzmath.finitefield.ExtendedField.__repr__(), nzmath.finitefield.FinitePrimeField.__str__(), nzmath.finitefield.FinitePrimeField.card(), nzmath.finitefield.ExtendedField.card(), nzmath.finitefield.FinitePrimeField.createElement(), nzmath.finitefield.FiniteField.getCharacteristic(), nzmath.finitefield.FinitePrimeField.issubring(), nzmath.finitefield.ExtendedField.issubring(), nzmath.finitefield.FiniteField.Legendre(), nzmath.finitefield.FinitePrimeField.primitive_element(), nzmath.finitefield.FiniteField.sqrt(), and nzmath.finitefield.FiniteField.TonelliShanks().