NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self, representative, field) |
def | getRing (self) |
def | __add__ (self, other) |
def | __sub__ (self, other) |
def | __rsub__ (self, other) |
def | __mul__ (self, other) |
def | __truediv__ (self, other) |
def | inverse (self) |
def | __pow__ (self, index) |
def | __neg__ (self) |
def | __pos__ (self) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __ne__ (self, other) |
def | __nonzero__ (self) |
def | __repr__ (self) |
def | trace (self) |
def | norm (self) |
![]() | |
def | __init__ (self) |
![]() | |
def | exact_division (self, other) |
![]() | |
def | mul_module_action (self, other) |
![]() | |
def | __init__ (self, *args, **kwd) |
Public Attributes | |
field | |
rep | |
Private Member Functions | |
def | _op (self, other, op) |
Static Private Attributes | |
def | __radd__ = __add__ |
def | __rmul__ = __mul__ |
def | __div__ = __truediv__ |
ExtendedFieldElement is a class for an element of F_q.
Definition at line 362 of file finitefield.py.
def nzmath.finitefield.ExtendedFieldElement.__init__ | ( | self, | |
representative, | |||
field | |||
) |
FiniteExtendedFieldElement(representative, field) creates an element of the finite extended field F_q. The argument representative has to be a polynomial with base field coefficients, i.e., if F_q is over F_{p^k} the representative has to F_{p^k} polynomial. Another argument field mut be an instance of ExtendedField.
Definition at line 366 of file finitefield.py.
def nzmath.finitefield.ExtendedFieldElement.__add__ | ( | self, | |
other | |||
) |
self + other other can be an element of either F_q, F_p or Z.
Definition at line 416 of file finitefield.py.
References nzmath.finitefield.ExtendedFieldElement._op(), nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, and nzmath.algfield.MatAlgNumber.field.
def nzmath.finitefield.ExtendedFieldElement.__eq__ | ( | self, | |
other | |||
) |
Equality test.
Reimplemented from nzmath.ring.RingElement.
Definition at line 490 of file finitefield.py.
References nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, nzmath.algfield.MatAlgNumber.field, and nzmath.finitefield.ExtendedFieldElement.rep.
Referenced by nzmath.poly.multivar.TermIndices.__ne__(), nzmath.poly.ring.PolynomialRing.__ne__(), nzmath.quad.ReducedQuadraticForm.__ne__(), nzmath.ring.Ring.__ne__(), nzmath.poly.formalsum.FormalSumContainerInterface.__ne__(), nzmath.poly.array.ArrayPoly.__ne__(), nzmath.real.RealField.__ne__(), nzmath.ring.Ideal.__ne__(), and nzmath.prime.FactoredInteger.__ne__().
def nzmath.finitefield.ExtendedFieldElement.__hash__ | ( | self | ) |
Reimplemented from nzmath.ring.RingElement.
Definition at line 499 of file finitefield.py.
References nzmath.finitefield.ExtendedFieldElement.rep.
def nzmath.finitefield.ExtendedFieldElement.__mul__ | ( | self, | |
other | |||
) |
self * other other can be an element of either F_q, F_p or Z.
Definition at line 446 of file finitefield.py.
References nzmath.finitefield.ExtendedFieldElement._op(), nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, and nzmath.algfield.MatAlgNumber.field.
def nzmath.finitefield.ExtendedFieldElement.__ne__ | ( | self, | |
other | |||
) |
Inequality test.
Reimplemented from nzmath.ring.RingElement.
Definition at line 502 of file finitefield.py.
def nzmath.finitefield.ExtendedFieldElement.__neg__ | ( | self | ) |
Definition at line 484 of file finitefield.py.
References nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, and nzmath.algfield.MatAlgNumber.field.
def nzmath.finitefield.ExtendedFieldElement.__nonzero__ | ( | self | ) |
Definition at line 505 of file finitefield.py.
References nzmath.finitefield.ExtendedFieldElement.rep.
def nzmath.finitefield.ExtendedFieldElement.__pos__ | ( | self | ) |
Definition at line 487 of file finitefield.py.
def nzmath.finitefield.ExtendedFieldElement.__pow__ | ( | self, | |
index | |||
) |
self ** index pow() with three arguments is not supported.
Definition at line 471 of file finitefield.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, nzmath.algfield.MatAlgNumber.field, and nzmath.finitefield.ExtendedFieldElement.rep.
def nzmath.finitefield.ExtendedFieldElement.__repr__ | ( | self | ) |
Definition at line 508 of file finitefield.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, nzmath.algfield.MatAlgNumber.field, and nzmath.finitefield.ExtendedFieldElement.rep.
def nzmath.finitefield.ExtendedFieldElement.__rsub__ | ( | self, | |
other | |||
) |
other - self other can be an element of either F_q, F_p or Z.
Definition at line 438 of file finitefield.py.
References nzmath.finitefield.ExtendedFieldElement._op().
def nzmath.finitefield.ExtendedFieldElement.__sub__ | ( | self, | |
other | |||
) |
self - other other can be an element of either F_q, F_p or Z.
Definition at line 428 of file finitefield.py.
References nzmath.finitefield.ExtendedFieldElement._op(), nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, and nzmath.algfield.MatAlgNumber.field.
def nzmath.finitefield.ExtendedFieldElement.__truediv__ | ( | self, | |
other | |||
) |
Definition at line 458 of file finitefield.py.
|
private |
Do `self (op) other'. op must be a name of the special method for binary operation.
Definition at line 395 of file finitefield.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.finitefield.double_embeddings(), nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, nzmath.algfield.MatAlgNumber.field, and nzmath.finitefield.ExtendedFieldElement.rep.
Referenced by nzmath.finitefield.ExtendedFieldElement.__add__(), nzmath.finitefield.ExtendedFieldElement.__mul__(), nzmath.finitefield.ExtendedFieldElement.__rsub__(), and nzmath.finitefield.ExtendedFieldElement.__sub__().
def nzmath.finitefield.ExtendedFieldElement.getRing | ( | self | ) |
Return the field to which the element belongs.
Reimplemented from nzmath.ring.RingElement.
Definition at line 389 of file finitefield.py.
References nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, and nzmath.algfield.MatAlgNumber.field.
Referenced by nzmath.poly.multiutil.RingPolynomial.__add__(), nzmath.ring.QuotientFieldElement.__add__(), nzmath.poly.uniutil.RingPolynomial.__add__(), nzmath.ring.QuotientFieldElement.__eq__(), nzmath.poly.uniutil.FieldPolynomial.__pow__(), nzmath.poly.multiutil.RingPolynomial.__radd__(), nzmath.poly.uniutil.RingPolynomial.__radd__(), nzmath.poly.multiutil.RingPolynomial.__rsub__(), nzmath.ring.QuotientFieldElement.__rsub__(), nzmath.poly.uniutil.RingPolynomial.__rsub__(), nzmath.ring.QuotientFieldElement.__rtruediv__(), nzmath.poly.multiutil.RingPolynomial.__sub__(), nzmath.ring.QuotientFieldElement.__sub__(), nzmath.poly.uniutil.RingPolynomial.__sub__(), nzmath.ring.QuotientFieldElement.__truediv__(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider._small_index_mod_pow(), nzmath.ring.CommutativeRingElement.exact_division(), nzmath.poly.uniutil.DivisionProvider.extgcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.factor(), nzmath.poly.uniutil.DivisionProvider.mod_pow(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.mod_pow(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_pow(), nzmath.ring.CommutativeRingElement.mul_module_action(), and nzmath.poly.uniutil.SubresultantGcdProvider.subresultant_gcd().
def nzmath.finitefield.ExtendedFieldElement.inverse | ( | self | ) |
Return the inverse of the element.
Definition at line 463 of file finitefield.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.gcd.extgcd(), nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, nzmath.algfield.MatAlgNumber.field, and nzmath.finitefield.ExtendedFieldElement.rep.
Referenced by nzmath.permute.Permute.__pow__(), nzmath.intresidue.IntegerResidueClass.__pow__(), nzmath.permute.ExPermute.__pow__(), nzmath.module.Ideal.__pow__(), nzmath.matrix.RingSquareMatrix.__pow__(), nzmath.permute.Permute.__rdiv__(), nzmath.permute.ExPermute.__rdiv__(), and nzmath.ring.QuotientFieldElement.__rtruediv__().
def nzmath.finitefield.ExtendedFieldElement.norm | ( | self | ) |
Return the absolute norm.
Definition at line 527 of file finitefield.py.
References nzmath.compatibility.card(), nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, and nzmath.algfield.MatAlgNumber.field.
Referenced by nzmath.module.Ideal.isPrime().
def nzmath.finitefield.ExtendedFieldElement.trace | ( | self | ) |
Return the absolute trace.
Definition at line 511 of file finitefield.py.
References nzmath.compatibility.card(), nzmath.algfield.BasicAlgNumber.field, nzmath.finitefield.ExtendedFieldElement.field, and nzmath.algfield.MatAlgNumber.field.
Referenced by nzmath.matrix.RingSquareMatrix._characteristicPolyList().
|
staticprivate |
Definition at line 461 of file finitefield.py.
|
staticprivate |
Definition at line 426 of file finitefield.py.
|
staticprivate |
Definition at line 456 of file finitefield.py.
nzmath.finitefield.ExtendedFieldElement.field |
Definition at line 379 of file finitefield.py.
Referenced by nzmath.finitefield.ExtendedFieldElement.__add__(), nzmath.finitefield.ExtendedFieldElement.__eq__(), nzmath.finitefield.ExtendedFieldElement.__mul__(), nzmath.finitefield.ExtendedFieldElement.__neg__(), nzmath.finitefield.ExtendedFieldElement.__pow__(), nzmath.finitefield.ExtendedFieldElement.__repr__(), nzmath.finitefield.ExtendedFieldElement.__sub__(), nzmath.finitefield.ExtendedFieldElement._op(), nzmath.finitefield.ExtendedFieldElement.getRing(), nzmath.finitefield.ExtendedFieldElement.inverse(), nzmath.finitefield.ExtendedFieldElement.norm(), and nzmath.finitefield.ExtendedFieldElement.trace().
nzmath.finitefield.ExtendedFieldElement.rep |
Definition at line 384 of file finitefield.py.
Referenced by nzmath.finitefield.ExtendedFieldElement.__eq__(), nzmath.finitefield.ExtendedFieldElement.__hash__(), nzmath.finitefield.ExtendedFieldElement.__nonzero__(), nzmath.finitefield.ExtendedFieldElement.__pow__(), nzmath.finitefield.ExtendedFieldElement.__repr__(), nzmath.finitefield.ExtendedFieldElement._op(), and nzmath.finitefield.ExtendedFieldElement.inverse().