NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self, coefficient, polynomial) |
def | __repr__ (self) |
def | __neg__ (self) |
def | __add__ (self, other) |
def | __sub__ (self, other) |
def | __mul__ (self, other) |
def | __truediv__ (self, other) |
def | __pow__ (self, other) |
def | inverse (self) |
def | norm (self) |
def | trace (self) |
def | getRing (self) |
def | ch_basic (self) |
Public Attributes | |
coeff | |
degree | |
matrix | |
polynomial | |
field | |
Static Private Attributes | |
def | __radd__ = __add__ |
def | __rmul__ = __mul__ |
def | __div__ = __truediv__ |
def | __floordiv__ = __truediv__ |
The class for algebraic number represented by matrix.
Definition at line 595 of file algfield.py.
def nzmath.algfield.MatAlgNumber.__init__ | ( | self, | |
coefficient, | |||
polynomial | |||
) |
Definition at line 599 of file algfield.py.
def nzmath.algfield.MatAlgNumber.__add__ | ( | self, | |
other | |||
) |
Definition at line 651 of file algfield.py.
References nzmath.algfield.NumberField.degree, nzmath.algfield.BasicAlgNumber.degree, nzmath.algfield.MatAlgNumber.degree, nzmath.algfield.MatAlgNumber.matrix, nzmath.algfield.NumberField.polynomial, nzmath.algfield.BasicAlgNumber.polynomial, nzmath.algfield.MatAlgNumber.polynomial, and nzmath.bigrange.range().
def nzmath.algfield.MatAlgNumber.__mul__ | ( | self, | |
other | |||
) |
Definition at line 677 of file algfield.py.
References nzmath.algfield.MatAlgNumber.matrix, nzmath.algfield.NumberField.polynomial, nzmath.algfield.BasicAlgNumber.polynomial, nzmath.algfield.MatAlgNumber.polynomial, and nzmath.bigrange.range().
def nzmath.algfield.MatAlgNumber.__neg__ | ( | self | ) |
Definition at line 644 of file algfield.py.
References nzmath.algfield.MatAlgNumber.matrix, nzmath.algfield.NumberField.polynomial, nzmath.algfield.BasicAlgNumber.polynomial, nzmath.algfield.MatAlgNumber.polynomial, and nzmath.bigrange.range().
def nzmath.algfield.MatAlgNumber.__pow__ | ( | self, | |
other | |||
) |
Definition at line 707 of file algfield.py.
References nzmath.algfield.MatAlgNumber.matrix, nzmath.algfield.NumberField.polynomial, nzmath.algfield.BasicAlgNumber.polynomial, nzmath.algfield.MatAlgNumber.polynomial, and nzmath.bigrange.range().
def nzmath.algfield.MatAlgNumber.__repr__ | ( | self | ) |
Definition at line 640 of file algfield.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.algfield.MatAlgNumber.matrix, nzmath.algfield.NumberField.polynomial, nzmath.algfield.BasicAlgNumber.polynomial, and nzmath.algfield.MatAlgNumber.polynomial.
def nzmath.algfield.MatAlgNumber.__sub__ | ( | self, | |
other | |||
) |
Definition at line 665 of file algfield.py.
References nzmath.algfield.NumberField.degree, nzmath.algfield.BasicAlgNumber.degree, nzmath.algfield.MatAlgNumber.degree, nzmath.algfield.MatAlgNumber.matrix, nzmath.algfield.NumberField.polynomial, nzmath.algfield.BasicAlgNumber.polynomial, nzmath.algfield.MatAlgNumber.polynomial, and nzmath.bigrange.range().
def nzmath.algfield.MatAlgNumber.__truediv__ | ( | self, | |
other | |||
) |
Definition at line 691 of file algfield.py.
References nzmath.algfield.MatAlgNumber.matrix, nzmath.algfield.NumberField.polynomial, nzmath.algfield.BasicAlgNumber.polynomial, nzmath.algfield.MatAlgNumber.polynomial, and nzmath.bigrange.range().
def nzmath.algfield.MatAlgNumber.ch_basic | ( | self | ) |
Definition at line 734 of file algfield.py.
References nzmath.algfield.BasicAlgNumber.coeff, nzmath.algfield.MatAlgNumber.coeff, nzmath.algfield.NumberField.degree, nzmath.algfield.BasicAlgNumber.degree, nzmath.algfield.MatAlgNumber.degree, nzmath.algfield.NumberField.polynomial, nzmath.algfield.BasicAlgNumber.polynomial, nzmath.algfield.MatAlgNumber.polynomial, and nzmath.bigrange.range().
def nzmath.algfield.MatAlgNumber.getRing | ( | self | ) |
Return the algebraic number field contained self.
Definition at line 728 of file algfield.py.
References nzmath.algfield.NumberField.polynomial, nzmath.algfield.BasicAlgNumber.polynomial, and nzmath.algfield.MatAlgNumber.polynomial.
Referenced by nzmath.poly.multiutil.RingPolynomial.__add__(), nzmath.ring.QuotientFieldElement.__add__(), nzmath.poly.uniutil.RingPolynomial.__add__(), nzmath.ring.QuotientFieldElement.__eq__(), nzmath.poly.uniutil.FieldPolynomial.__pow__(), nzmath.poly.multiutil.RingPolynomial.__radd__(), nzmath.poly.uniutil.RingPolynomial.__radd__(), nzmath.poly.multiutil.RingPolynomial.__rsub__(), nzmath.ring.QuotientFieldElement.__rsub__(), nzmath.poly.uniutil.RingPolynomial.__rsub__(), nzmath.ring.QuotientFieldElement.__rtruediv__(), nzmath.poly.multiutil.RingPolynomial.__sub__(), nzmath.ring.QuotientFieldElement.__sub__(), nzmath.poly.uniutil.RingPolynomial.__sub__(), nzmath.ring.QuotientFieldElement.__truediv__(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider._small_index_mod_pow(), nzmath.ring.CommutativeRingElement.exact_division(), nzmath.poly.uniutil.DivisionProvider.extgcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.factor(), nzmath.poly.uniutil.DivisionProvider.mod_pow(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.mod_pow(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_pow(), nzmath.ring.CommutativeRingElement.mul_module_action(), and nzmath.poly.uniutil.SubresultantGcdProvider.subresultant_gcd().
def nzmath.algfield.MatAlgNumber.inverse | ( | self | ) |
Definition at line 714 of file algfield.py.
References nzmath.algfield.MatAlgNumber.matrix, nzmath.algfield.NumberField.polynomial, nzmath.algfield.BasicAlgNumber.polynomial, nzmath.algfield.MatAlgNumber.polynomial, and nzmath.bigrange.range().
Referenced by nzmath.permute.Permute.__pow__(), nzmath.intresidue.IntegerResidueClass.__pow__(), nzmath.permute.ExPermute.__pow__(), nzmath.module.Ideal.__pow__(), nzmath.matrix.RingSquareMatrix.__pow__(), nzmath.permute.Permute.__rdiv__(), nzmath.permute.ExPermute.__rdiv__(), and nzmath.ring.QuotientFieldElement.__rtruediv__().
def nzmath.algfield.MatAlgNumber.norm | ( | self | ) |
Definition at line 722 of file algfield.py.
References nzmath.algfield.MatAlgNumber.matrix.
Referenced by nzmath.module.Ideal.isPrime().
def nzmath.algfield.MatAlgNumber.trace | ( | self | ) |
Definition at line 725 of file algfield.py.
References nzmath.algfield.MatAlgNumber.matrix.
Referenced by nzmath.matrix.RingSquareMatrix._characteristicPolyList(), and nzmath.elliptic.ECoverGF.order().
|
staticprivate |
Definition at line 704 of file algfield.py.
|
staticprivate |
Definition at line 705 of file algfield.py.
|
staticprivate |
Definition at line 663 of file algfield.py.
|
staticprivate |
Definition at line 689 of file algfield.py.
nzmath.algfield.MatAlgNumber.coeff |
Definition at line 602 of file algfield.py.
Referenced by nzmath.algfield.MatAlgNumber.ch_basic().
nzmath.algfield.MatAlgNumber.degree |
Definition at line 603 of file algfield.py.
Referenced by nzmath.poly.array.ArrayPoly.__add__(), nzmath.algfield.MatAlgNumber.__add__(), nzmath.finitefield.ExtendedField.__eq__(), nzmath.finitefield.ExtendedField.__hash__(), nzmath.poly.array.ArrayPoly.__mul__(), nzmath.poly.array.ArrayPolyMod.__mul__(), nzmath.finitefield.ExtendedField.__repr__(), nzmath.poly.array.ArrayPoly.__sub__(), nzmath.algfield.MatAlgNumber.__sub__(), nzmath.finitefield.ExtendedField.card(), nzmath.algfield.MatAlgNumber.ch_basic(), nzmath.poly.array.ArrayPoly.coefficients_to_dict(), nzmath.poly.uniutil.DomainPolynomial.discriminant(), nzmath.poly.uniutil.FieldPolynomial.discriminant(), nzmath.poly.array.ArrayPoly.downshift_degree(), nzmath.poly.array.ArrayPoly.FFT_mul(), nzmath.poly.array.ArrayPolyMod.FFT_mul(), nzmath.finitefield.ExtendedField.issubring(), nzmath.poly.array.ArrayPoly.power(), nzmath.poly.array.ArrayPolyMod.power(), nzmath.poly.array.ArrayPoly.split_at(), and nzmath.poly.array.ArrayPolyMod.split_at().
nzmath.algfield.MatAlgNumber.field |
Definition at line 638 of file algfield.py.
Referenced by nzmath.finitefield.ExtendedFieldElement.__add__(), nzmath.finitefield.ExtendedFieldElement.__eq__(), nzmath.finitefield.ExtendedFieldElement.__mul__(), nzmath.finitefield.ExtendedFieldElement.__neg__(), nzmath.finitefield.ExtendedFieldElement.__pow__(), nzmath.finitefield.ExtendedFieldElement.__repr__(), nzmath.finitefield.ExtendedFieldElement.__sub__(), nzmath.finitefield.ExtendedFieldElement._op(), nzmath.finitefield.ExtendedFieldElement.getRing(), nzmath.finitefield.ExtendedFieldElement.inverse(), nzmath.finitefield.ExtendedFieldElement.norm(), and nzmath.finitefield.ExtendedFieldElement.trace().
nzmath.algfield.MatAlgNumber.matrix |
Definition at line 636 of file algfield.py.
Referenced by nzmath.algfield.MatAlgNumber.__add__(), nzmath.algfield.MatAlgNumber.__mul__(), nzmath.algfield.MatAlgNumber.__neg__(), nzmath.algfield.MatAlgNumber.__pow__(), nzmath.algfield.MatAlgNumber.__repr__(), nzmath.algfield.MatAlgNumber.__sub__(), nzmath.algfield.MatAlgNumber.__truediv__(), nzmath.algfield.MatAlgNumber.inverse(), nzmath.algfield.MatAlgNumber.norm(), and nzmath.algfield.MatAlgNumber.trace().
nzmath.algfield.MatAlgNumber.polynomial |
Definition at line 637 of file algfield.py.
Referenced by nzmath.algfield.MatAlgNumber.__add__(), nzmath.algfield.MatAlgNumber.__mul__(), nzmath.algfield.MatAlgNumber.__neg__(), nzmath.algfield.MatAlgNumber.__pow__(), nzmath.algfield.MatAlgNumber.__repr__(), nzmath.algfield.MatAlgNumber.__sub__(), nzmath.algfield.MatAlgNumber.__truediv__(), nzmath.algfield.MatAlgNumber.ch_basic(), nzmath.algfield.MatAlgNumber.getRing(), and nzmath.algfield.MatAlgNumber.inverse().