NZMATH  1.2.0 About: NZMATH is a Python based number theory oriented calculation system.   Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)
nzmath.algfield.BasicAlgNumber Class Reference
Inheritance diagram for nzmath.algfield.BasicAlgNumber:
[legend]
Collaboration diagram for nzmath.algfield.BasicAlgNumber:
[legend]

## Public Member Functions

def __init__ (self, valuelist, polynomial, precompute=False)

def __repr__ (self)

def __neg__ (self)

def __sub__ (self, other)

def __mul__ (self, other)

def __pow__ (self, exponent, mod=None)

def inverse (self)

def __truediv__ (self, other)

def getConj (self)

def getApprox (self)

def getCharPoly (self)

def getRing (self)

def trace (self)

def norm (self)

def isAlgInteger (self)

def ch_matrix (self)

value

coeff

denom

degree

polynomial

field

conj

approx

charpoly

## Private Member Functions

def _int_to_algnumber (self, other)

def _rational_to_algnumber (self, other)

## Static Private Attributes

def __rmul__ = __mul__

def __div__ = __truediv__

def __floordiv__ = __truediv__

## Detailed Description

```The class for algebraic number.
```

Definition at line 341 of file algfield.py.

## ◆ __init__()

 def nzmath.algfield.BasicAlgNumber.__init__ ( self, valuelist, polynomial, precompute = `False` )

Definition at line 345 of file algfield.py.

## Member Function Documentation

 def nzmath.algfield.BasicAlgNumber.__add__ ( self, other )

## ◆ __mul__()

 def nzmath.algfield.BasicAlgNumber.__mul__ ( self, other )

## ◆ __neg__()

 def nzmath.algfield.BasicAlgNumber.__neg__ ( self )

Definition at line 368 of file algfield.py.

## ◆ __pow__()

 def nzmath.algfield.BasicAlgNumber.__pow__ ( self, exponent, mod = `None` )

## ◆ __repr__()

 def nzmath.algfield.BasicAlgNumber.__repr__ ( self )

## ◆ __sub__()

 def nzmath.algfield.BasicAlgNumber.__sub__ ( self, other )

Definition at line 405 of file algfield.py.

## ◆ __truediv__()

 def nzmath.algfield.BasicAlgNumber.__truediv__ ( self, other )

## ◆ _int_to_algnumber()

 def nzmath.algfield.BasicAlgNumber._int_to_algnumber ( self, other )
private
```other (integer) -> BasicAlgNumber (over self.field)
```

Definition at line 374 of file algfield.py.

## ◆ _rational_to_algnumber()

 def nzmath.algfield.BasicAlgNumber._rational_to_algnumber ( self, other )
private
```other (rational) -> BasicAlgNumber (over self.field)
```

Definition at line 381 of file algfield.py.

## ◆ ch_matrix()

 def nzmath.algfield.BasicAlgNumber.ch_matrix ( self )
```Change style to MatAlgNumber.
```

Definition at line 583 of file algfield.py.

## ◆ getApprox()

 def nzmath.algfield.BasicAlgNumber.getApprox ( self )
```Return the approximations of all conjugates of self.
```

Definition at line 488 of file algfield.py.

Referenced by nzmath.algfield.BasicAlgNumber.getCharPoly().

## ◆ getCharPoly()

 def nzmath.algfield.BasicAlgNumber.getCharPoly ( self )
```Return the characteristic polynomial of self
by compute products of (x-self^{(i)}).
```

Definition at line 502 of file algfield.py.

## ◆ getConj()

 def nzmath.algfield.BasicAlgNumber.getConj ( self )
```Return (approximate) solutions of self.polynomial.
We can discriminate the conjugate field of self by these values.
```

Definition at line 479 of file algfield.py.

Referenced by nzmath.algfield.BasicAlgNumber.getApprox().

## ◆ inverse()

 def nzmath.algfield.BasicAlgNumber.inverse ( self )

## ◆ isAlgInteger()

 def nzmath.algfield.BasicAlgNumber.isAlgInteger ( self )
```Determine whether self is an algebraic integer or not.
```

Definition at line 573 of file algfield.py.

References nzmath.algfield.BasicAlgNumber.norm().

## ◆ norm()

 def nzmath.algfield.BasicAlgNumber.norm ( self )
```Compute the norm of self in K.
```

Definition at line 553 of file algfield.py.

Referenced by nzmath.algfield.BasicAlgNumber.isAlgInteger(), and nzmath.module.Ideal.isPrime().

## ◆ trace()

 def nzmath.algfield.BasicAlgNumber.trace ( self )
```Compute the trace of self in K.
```

Definition at line 528 of file algfield.py.

## ◆ __div__

 def nzmath.algfield.BasicAlgNumber.__div__ = __truediv__
staticprivate

Definition at line 476 of file algfield.py.

## ◆ __floordiv__

 def nzmath.algfield.BasicAlgNumber.__floordiv__ = __truediv__
staticprivate

Definition at line 477 of file algfield.py.

staticprivate

Definition at line 403 of file algfield.py.

## ◆ __rmul__

 def nzmath.algfield.BasicAlgNumber.__rmul__ = __mul__
staticprivate

Definition at line 432 of file algfield.py.

## ◆ approx

 nzmath.algfield.BasicAlgNumber.approx

Definition at line 499 of file algfield.py.

## ◆ charpoly

 nzmath.algfield.BasicAlgNumber.charpoly

Definition at line 519 of file algfield.py.

## ◆ conj

 nzmath.algfield.BasicAlgNumber.conj

Definition at line 485 of file algfield.py.

## ◆ denom

 nzmath.algfield.BasicAlgNumber.denom

## ◆ value

 nzmath.algfield.BasicAlgNumber.value

Definition at line 348 of file algfield.py.

The documentation for this class was generated from the following file: