NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.algfield.BasicAlgNumber Class Reference
Inheritance diagram for nzmath.algfield.BasicAlgNumber:
[legend]
Collaboration diagram for nzmath.algfield.BasicAlgNumber:
[legend]

Public Member Functions

def __init__ (self, valuelist, polynomial, precompute=False)
 
def __repr__ (self)
 
def __neg__ (self)
 
def __add__ (self, other)
 
def __sub__ (self, other)
 
def __mul__ (self, other)
 
def __pow__ (self, exponent, mod=None)
 
def inverse (self)
 
def __truediv__ (self, other)
 
def getConj (self)
 
def getApprox (self)
 
def getCharPoly (self)
 
def getRing (self)
 
def trace (self)
 
def norm (self)
 
def isAlgInteger (self)
 
def ch_matrix (self)
 

Public Attributes

 value
 
 coeff
 
 denom
 
 degree
 
 polynomial
 
 field
 
 conj
 
 approx
 
 charpoly
 

Private Member Functions

def _int_to_algnumber (self, other)
 
def _rational_to_algnumber (self, other)
 

Static Private Attributes

def __radd__ = __add__
 
def __rmul__ = __mul__
 
def __div__ = __truediv__
 
def __floordiv__ = __truediv__
 

Detailed Description

The class for algebraic number.

Definition at line 341 of file algfield.py.

Constructor & Destructor Documentation

◆ __init__()

def nzmath.algfield.BasicAlgNumber.__init__ (   self,
  valuelist,
  polynomial,
  precompute = False 
)

Definition at line 345 of file algfield.py.

Member Function Documentation

◆ __add__()

◆ __mul__()

◆ __neg__()

◆ __pow__()

◆ __repr__()

◆ __sub__()

def nzmath.algfield.BasicAlgNumber.__sub__ (   self,
  other 
)

Definition at line 405 of file algfield.py.

References nzmath.algfield.BasicAlgNumber.__add__().

◆ __truediv__()

◆ _int_to_algnumber()

def nzmath.algfield.BasicAlgNumber._int_to_algnumber (   self,
  other 
)
private

◆ _rational_to_algnumber()

def nzmath.algfield.BasicAlgNumber._rational_to_algnumber (   self,
  other 
)
private

◆ ch_matrix()

◆ getApprox()

def nzmath.algfield.BasicAlgNumber.getApprox (   self)

◆ getCharPoly()

def nzmath.algfield.BasicAlgNumber.getCharPoly (   self)
Return the characteristic polynomial of self
by compute products of (x-self^{(i)}).

Definition at line 502 of file algfield.py.

References nzmath.algfield.NumberField.degree, nzmath.algfield.BasicAlgNumber.degree, nzmath.algfield.BasicAlgNumber.getApprox(), and nzmath.bigrange.range().

◆ getConj()

def nzmath.algfield.BasicAlgNumber.getConj (   self)
Return (approximate) solutions of self.polynomial.
We can discriminate the conjugate field of self by these values.

Definition at line 479 of file algfield.py.

Referenced by nzmath.algfield.BasicAlgNumber.getApprox().

◆ getRing()

def nzmath.algfield.BasicAlgNumber.getRing (   self)

◆ inverse()

◆ isAlgInteger()

def nzmath.algfield.BasicAlgNumber.isAlgInteger (   self)
Determine whether self is an algebraic integer or not.

Definition at line 573 of file algfield.py.

References nzmath.algfield.BasicAlgNumber.norm().

◆ norm()

◆ trace()

Member Data Documentation

◆ __div__

def nzmath.algfield.BasicAlgNumber.__div__ = __truediv__
staticprivate

Definition at line 476 of file algfield.py.

◆ __floordiv__

def nzmath.algfield.BasicAlgNumber.__floordiv__ = __truediv__
staticprivate

Definition at line 477 of file algfield.py.

◆ __radd__

def nzmath.algfield.BasicAlgNumber.__radd__ = __add__
staticprivate

Definition at line 403 of file algfield.py.

◆ __rmul__

def nzmath.algfield.BasicAlgNumber.__rmul__ = __mul__
staticprivate

Definition at line 432 of file algfield.py.

◆ approx

nzmath.algfield.BasicAlgNumber.approx

Definition at line 499 of file algfield.py.

◆ charpoly

nzmath.algfield.BasicAlgNumber.charpoly

Definition at line 519 of file algfield.py.

◆ coeff

◆ conj

nzmath.algfield.BasicAlgNumber.conj

Definition at line 485 of file algfield.py.

◆ degree

nzmath.algfield.BasicAlgNumber.degree

◆ denom

◆ field

◆ polynomial

◆ value

nzmath.algfield.BasicAlgNumber.value

Definition at line 348 of file algfield.py.


The documentation for this class was generated from the following file: