"Fossies" - the Fresh Open Source Software Archive  

Source code changes of the file "src/pearson.c" between
n2n-2.8.tar.gz and n2n-3.0.tar.gz

About: n2n is a layer-two peer-to-peer virtual private network (VPN) which allows bypassing intermediate firewalls.

pearson.c  (n2n-2.8):pearson.c  (n2n-3.0)
/** /**
* (C) 2007-20 - ntop.org and contributors * (C) 2007-21 - ntop.org and contributors
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or * the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version. * (at your option) any later version.
* *
* This program is distributed in the hope that it will be useful, * This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details. * GNU General Public License for more details.
* *
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with this program; if not see see <http://www.gnu.org/licenses/> * along with this program; if not see see <http://www.gnu.org/licenses/>
* *
*/ */
// taken from https://github.com/Logan007/pearson // taken from https://github.com/Logan007/pearsonB
// This is free and unencumbered software released into the public domain. // this is free and unencumbered software released into the public domain
#include <stddef.h>
#include <stdint.h>
#include "pearson.h" #include "pearson.h"
// compile with 'LOW_MEM_FOOTPRINT' defined to make use of 256 byte look-up tabe // Christopher Wellons' triple32 from https://github.com/skeeto/hash-prospector
only // published under The Unlicense
// otherwise, a 16-bit look-up table is used which allows considerably faster ha #define permute32(in) \
shing in ^= in >> 17; \
// however, it needs to be generated by once calling pearson_hash_init() upfront in *= 0xed5ad4bb; \
// #define LOW_MEM_FOOTPRINT in ^= in >> 11; \
in *= 0xac4c1b51; \
// table as in original paper "Fast Hashing of Variable-Length Text Strings" by in ^= in >> 15; \
Peter K. Pearson in *= 0x31848bab; \
// as published in The Communications of the ACM Vol.33, No. 6 (June 1990), pp in ^= in >> 14
. 677-680.
static const uint8_t t[256] ={ // David Stafford's Mix13 from http://zimbry.blogspot.com/2011/09/better-bit-mix
0x01, 0x57, 0x31, 0x0c, 0xb0, 0xb2, 0x66, 0xa6, 0x79, 0xc1, 0x06, 0x54, 0xf9, ing-improving-on.html
0xe6, 0x2c, 0xa3, // the author clarified via eMail that this of his work is released to the publi
0x0e, 0xc5, 0xd5, 0xb5, 0xa1, 0x55, 0xda, 0x50, 0x40, 0xef, 0x18, 0xe2, 0xec, c domain
0x8e, 0x26, 0xc8, #define permute64(in) \
0x6e, 0xb1, 0x68, 0x67, 0x8d, 0xfd, 0xff, 0x32, 0x4d, 0x65, 0x51, 0x12, 0x2d, in ^= (in >> 30); \
0x60, 0x1f, 0xde, in *= 0xbf58476d1ce4e5b9; \
0x19, 0x6b, 0xbe, 0x46, 0x56, 0xed, 0xf0, 0x22, 0x48, 0xf2, 0x14, 0xd6, 0xf4, in ^= (in >> 27); \
0xe3, 0x95, 0xeb, in *= 0x94d049bb133111eb; \
0x61, 0xea, 0x39, 0x16, 0x3c, 0xfa, 0x52, 0xaf, 0xd0, 0x05, 0x7f, 0xc7, 0x6f, in ^= (in >> 31)
0x3e, 0x87, 0xf8,
0xae, 0xa9, 0xd3, 0x3a, 0x42, 0x9a, 0x6a, 0xc3, 0xf5, 0xab, 0x11, 0xbb, 0xb6, #define dec1(in) \
0xb3, 0x00, 0xf3, in--
0x84, 0x38, 0x94, 0x4b, 0x80, 0x85, 0x9e, 0x64, 0x82, 0x7e, 0x5b, 0x0d, 0x99,
0xf6, 0xd8, 0xdb, #define dec2(in) \
0x77, 0x44, 0xdf, 0x4e, 0x53, 0x58, 0xc9, 0x63, 0x7a, 0x0b, 0x5c, 0x20, 0x88, dec1(in); \
0x72, 0x34, 0x0a, dec1(in)
0x8a, 0x1e, 0x30, 0xb7, 0x9c, 0x23, 0x3d, 0x1a, 0x8f, 0x4a, 0xfb, 0x5e, 0x81,
0xa2, 0x3f, 0x98, #define dec3(in) \
0xaa, 0x07, 0x73, 0xa7, 0xf1, 0xce, 0x03, 0x96, 0x37, 0x3b, 0x97, 0xdc, 0x5a, dec2(in); \
0x35, 0x17, 0x83, dec1(in)
0x7d, 0xad, 0x0f, 0xee, 0x4f, 0x5f, 0x59, 0x10, 0x69, 0x89, 0xe1, 0xe0, 0xd9,
0xa0, 0x25, 0x7b, #define dec4(in) \
0x76, 0x49, 0x02, 0x9d, 0x2e, 0x74, 0x09, 0x91, 0x86, 0xe4, 0xcf, 0xd4, 0xca, dec3(in); \
0xd7, 0x45, 0xe5, dec1(in)
0x1b, 0xbc, 0x43, 0x7c, 0xa8, 0xfc, 0x2a, 0x04, 0x1d, 0x6c, 0x15, 0xf7, 0x13,
0xcd, 0x27, 0xcb, #define hash_round(hash, in, part) \
0xe9, 0x28, 0xba, 0x93, 0xc6, 0xc0, 0x9b, 0x21, 0xa4, 0xbf, 0x62, 0xcc, 0xa5, hash##part ^= in; \
0xb4, 0x75, 0x4c, dec##part(hash##part); \
0x8c, 0x24, 0xd2, 0xac, 0x29, 0x36, 0x9f, 0x08, 0xb9, 0xe8, 0x71, 0xc4, 0xe7, permute64(hash##part)
0x2f, 0x92, 0x78,
0x33, 0x41, 0x1c, 0x90, 0xfe, 0xdd, 0x5d, 0xbd, 0xc2, 0x8b, 0x70, 0x2b, 0x47,
0x6d, 0xb8, 0xd1 };
/*
// alternative table as used in RFC 3074 and NOT as in original paper
static const uint8_t t[256] ={
0xfb, 0xaf, 0x77, 0xd7, 0x51, 0x0e, 0x4f, 0xbf, 0x67, 0x31, 0xb5, 0x8f, 0xba, 0x
9d, 0x00, 0xe8,
0x1f, 0x20, 0x37, 0x3c, 0x98, 0x3a, 0x11, 0xed, 0xae, 0x46, 0xa0, 0x90, 0xdc, 0x
5a, 0x39, 0xdf,
0x3b, 0x03, 0x12, 0x8c, 0x6f, 0xa6, 0xcb, 0xc4, 0x86, 0xf3, 0x7c, 0x5f, 0xde, 0x
b3, 0xc5, 0x41,
0xb4, 0x30, 0x24, 0x0f, 0x6b, 0x2e, 0xe9, 0x82, 0xa5, 0x1e, 0x7b, 0xa1, 0xd1, 0x
17, 0x61, 0x10,
0x28, 0x5b, 0xdb, 0x3d, 0x64, 0x0a, 0xd2, 0x6d, 0xfa, 0x7f, 0x16, 0x8a, 0x1d, 0x
6c, 0xf4, 0x43,
0xcf, 0x09, 0xb2, 0xcc, 0x4a, 0x62, 0x7e, 0xf9, 0xa7, 0x74, 0x22, 0x4d, 0xc1, 0x
c8, 0x79, 0x05,
0x14, 0x71, 0x47, 0x23, 0x80, 0x0d, 0xb6, 0x5e, 0x19, 0xe2, 0xe3, 0xc7, 0x4b, 0x
1b, 0x29, 0xf5,
0xe6, 0xe0, 0x2b, 0xe1, 0xb1, 0x1a, 0x9b, 0x96, 0xd4, 0x8e, 0xda, 0x73, 0xf1, 0x
49, 0x58, 0x69,
0x27, 0x72, 0x3e, 0xff, 0xc0, 0xc9, 0x91, 0xd6, 0xa8, 0x9e, 0xdd, 0x94, 0x9a, 0x
7a, 0x0c, 0x54,
0x52, 0xa3, 0x2c, 0x8b, 0xe4, 0xec, 0xcd, 0xf2, 0xd9, 0x0b, 0xbb, 0x92, 0x9f, 0x
40, 0x56, 0xef,
0xc3, 0x2a, 0x6a, 0xc6, 0x76, 0x70, 0xb8, 0xac, 0x57, 0x02, 0xad, 0x75, 0xb0, 0x
e5, 0xf7, 0xfd,
0x89, 0xb9, 0x63, 0xa4, 0x66, 0x93, 0x2d, 0x42, 0xe7, 0x34, 0x8d, 0xd3, 0xc2, 0x
ce, 0xf6, 0xee,
0x38, 0x6e, 0x4e, 0xf8, 0x3f, 0xf0, 0xbd, 0x5d, 0x5c, 0x33, 0x35, 0xb7, 0x13, 0x
ab, 0x48, 0x32,
0x21, 0x68, 0x65, 0x45, 0x08, 0xfc, 0x53, 0x78, 0x4c, 0x87, 0x55, 0x36, 0xca, 0x
7d, 0xbc, 0xd5,
0x60, 0xeb, 0x88, 0xd0, 0xa2, 0x81, 0xbe, 0x84, 0x9c, 0x26, 0x2f, 0x01, 0x07, 0x
fe, 0x18, 0x04,
0xd8, 0x83, 0x59, 0x15, 0x1c, 0x85, 0x25, 0x99, 0x95, 0x50, 0xaa, 0x44, 0x06, 0x
a9, 0xea, 0x97 }; */
#ifndef LOW_MEM_FOOTPRINT
static uint16_t t16[65536]; // 16-bit look-up table
#endif
#define ROR64(x,r) (((x)>>(r))|((x)<<(64-(r))))
#define ROR32(x,r) (((x)>>(r))|((x)<<(32-(r))))
void pearson_hash_256 (uint8_t *out, const uint8_t *in, size_t len) { void pearson_hash_256 (uint8_t *out, const uint8_t *in, size_t len) {
size_t i; uint64_t *current;
/* initial values - astonishingly, assembling using SHIFTs and ORs (in regist current = (uint64_t*)in;
er) uint64_t org_len = len;
* works faster on well pipelined CPUs than loading the 64-bit value from memo uint64_t hash1 = 0;
ry. uint64_t hash2 = 0;
* however, there is one advantage to loading from memory: as we also store ba uint64_t hash3 = 0;
ck to uint64_t hash4 = 0;
* memory at the end, we do not need to care about endianess! */
uint8_t upper[8] = { 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; while (len > 7) {
uint8_t lower[8] = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00 }; // digest words little endian first
hash_round(hash, le64toh(*current), 1);
uint64_t upper_hash_mask = *(uint64_t*)&upper; hash_round(hash, le64toh(*current), 2);
uint64_t lower_hash_mask = *(uint64_t*)&lower; hash_round(hash, le64toh(*current), 3);
uint64_t high_upper_hash_mask = upper_hash_mask + 0x1010101010101010; hash_round(hash, le64toh(*current), 4);
uint64_t high_lower_hash_mask = lower_hash_mask + 0x1010101010101010;
current++;
uint64_t upper_hash = 0; len-=8;
uint64_t lower_hash = 0; }
uint64_t high_upper_hash = 0;
uint64_t high_lower_hash = 0; // handle the rest
hash1 = ~hash1;
for (i = 0; i < len; i++) { hash2 = ~hash2;
// broadcast the character, xor into hash, make them different permutations hash3 = ~hash3;
uint64_t c = (uint8_t)in[i]; hash4 = ~hash4;
c |= c << 8;
c |= c << 16; while(len) {
c |= c << 32; // byte-wise, no endianess
upper_hash ^= c ^ upper_hash_mask; hash_round(hash, *(uint8_t*)current, 1);
lower_hash ^= c ^ lower_hash_mask; hash_round(hash, *(uint8_t*)current, 2);
high_upper_hash ^= c ^ high_upper_hash_mask; hash_round(hash, *(uint8_t*)current, 3);
high_lower_hash ^= c ^ high_lower_hash_mask; hash_round(hash, *(uint8_t*)current, 4);
// table lookup current = (uint64_t*)((uint8_t*)current + 1);
uint64_t h = 0; len--;
#ifdef LOW_MEM_FOOTPRINT // 256 byte look-up table ---------- }
uint8_t x;
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); // digest length
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); hash1 = ~hash1;
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); hash2 = ~hash2;
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); hash3 = ~hash3;
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); hash4 = ~hash4;
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); hash_round(hash, org_len, 1);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); hash_round(hash, org_len, 2);
upper_hash = h; hash_round(hash, org_len, 3);
hash_round(hash, org_len, 4);
h = 0;
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); // hash string is stored big endian, the natural way to read
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); uint64_t *o;
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); o = (uint64_t*)out;
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); *o = htobe64(hash4);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); o++;
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); *o = htobe64(hash3);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); o++;
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); *o = htobe64(hash2);
lower_hash = h; o++;
*o = htobe64(hash1);
h = 0;
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
high_upper_hash = h;
h = 0;
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
high_lower_hash = h;
#else // 16-bit look-up table -------------------------------
uint16_t x;
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16);
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16);
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16);
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16);
upper_hash = h;
h = 0;
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16);
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16);
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16);
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16);
lower_hash = h;
h = 0;
x = high_upper_hash; x = t16[x]; high_upper_hash >>= 16; h |= x; h=ROR64(h,1
6);
x = high_upper_hash; x = t16[x]; high_upper_hash >>= 16; h |= x; h=ROR64(h,1
6);
x = high_upper_hash; x = t16[x]; high_upper_hash >>= 16; h |= x; h=ROR64(h,1
6);
x = high_upper_hash; x = t16[x]; high_upper_hash >>= 16; h |= x; h=ROR64(h,1
6);
high_upper_hash = h;
h = 0;
x = high_lower_hash; x = t16[x]; high_lower_hash >>= 16; h |= x; h=ROR64(h,1
6);
x = high_lower_hash; x = t16[x]; high_lower_hash >>= 16; h |= x; h=ROR64(h,1
6);
x = high_lower_hash; x = t16[x]; high_lower_hash >>= 16; h |= x; h=ROR64(h,1
6);
x = high_lower_hash; x = t16[x]; high_lower_hash >>= 16; h |= x; h=ROR64(h,1
6);
high_lower_hash = h;
#endif // LOW_MEM_FOOTPRINT ------
}
// store output
uint64_t *o;
o = (uint64_t*)&out[0];
*o = high_upper_hash;
o = (uint64_t*)&out[8];
*o = high_lower_hash;
o = (uint64_t*)&out[16];
*o = upper_hash;
o = (uint64_t*)&out[24];
*o = lower_hash;
} }
void pearson_hash_128 (uint8_t *out, const uint8_t *in, size_t len) { void pearson_hash_128 (uint8_t *out, const uint8_t *in, size_t len) {
size_t i; uint64_t *current;
/* initial values - astonishingly, assembling using SHIFTs and ORs (in regist current = (uint64_t*)in;
er) uint64_t org_len = len;
* works faster on well pipelined CPUs than loading the 64-bit value from memo uint64_t hash1 = 0;
ry. uint64_t hash2 = 0;
* however, there is one advantage to loading from memory: as we also store ba
ck to while (len > 7) {
* memory at the end, we do not need to care about endianess! */ // digest words little endian first
uint8_t upper[8] = { 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; hash_round(hash, le64toh(*current), 1);
uint8_t lower[8] = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00 }; hash_round(hash, le64toh(*current), 2);
uint64_t upper_hash_mask = *(uint64_t*)&upper; current++;
uint64_t lower_hash_mask = *(uint64_t*)&lower; len-=8;
}
uint64_t upper_hash = 0;
uint64_t lower_hash = 0; // handle the rest
hash1 = ~hash1;
for (i = 0; i < len; i++) { hash2 = ~hash2;
// broadcast the character, xor into hash, make them different permutations
uint64_t c = (uint8_t)in[i]; while(len) {
c |= c << 8; // byte-wise, no endianess
c |= c << 16; hash_round(hash, *(uint8_t*)current, 1);
c |= c << 32; hash_round(hash, *(uint8_t*)current, 2);
upper_hash ^= c ^ upper_hash_mask;
lower_hash ^= c ^ lower_hash_mask; current = (uint64_t*)((uint8_t*)current + 1);
// table lookup len--;
uint64_t h = 0; }
#ifdef LOW_MEM_FOOTPRINT // 256 byte look-up table ----------
uint8_t x; // digest length
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); hash1 = ~hash1;
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); hash2 = ~hash2;
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); hash_round(hash, org_len, 1);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); hash_round(hash, org_len, 2);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); // hash string is stored big endian, the natural way to read
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8); uint64_t *o;
upper_hash = h; o = (uint64_t*)out;
*o = htobe64(hash2);
h = 0; o++;
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); *o = htobe64(hash1);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); }
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); uint64_t pearson_hash_64 (const uint8_t *in, size_t len) {
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); uint64_t *current;
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); current = (uint64_t*)in;
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8); uint64_t org_len = len;
lower_hash= h; uint64_t hash1 = 0;
#else // 16-bit look-up table -------------------------------
uint16_t x; while(len > 7) {
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16); // digest words little endian first
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16); hash_round(hash, le64toh(*current), 1);
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16);
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16); current++;
upper_hash = h; len-=8;
}
h = 0;
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); // handle the rest
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); hash1 = ~hash1;
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); while(len) {
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); // byte-wise, no endianess
lower_hash = h; hash_round(hash, *(uint8_t*)current, 1);
#endif // LOW_MEM_FOOTPRINT ------
} current = (uint64_t*)((uint8_t*)current + 1);
// store output len--;
uint64_t *o; }
o = (uint64_t*)&out[0];
*o = upper_hash; // digest length
o = (uint64_t*)&out[8]; hash1 = ~hash1;
*o = lower_hash; hash_round(hash, org_len, 1);
// caller is responsible for storing it big endian to memory (if ever)
return hash1;
} }
/* --- for later use ---
// 32-bit hash: the return value has to be interpreted as uint32_t and
// follows machine-specific endianess in memory
uint32_t pearson_hash_32 (const uint8_t *in, size_t len) { uint32_t pearson_hash_32 (const uint8_t *in, size_t len) {
size_t i; return pearson_hash_64(in, len);
uint32_t hash = 0; }
uint32_t hash_mask = 0x03020100;
for (i = 0; i < len; i++) {
// broadcast the character, xor into hash, make them different permutations
uint32_t c = (uint8_t)in[i];
c |= c << 8;
c |= c << 16;
hash ^= c ^ hash_mask;
// table lookup
#ifdef LOW_MEM_FOOTPRINT
uint32_t h = 0;
uint8_t x;
x = hash; x = t[x]; hash >>= 8; h |= x; h=ROR32(h,8);
x = hash; x = t[x]; hash >>= 8; h |= x; h=ROR32(h,8);
x = hash; x = t[x]; hash >>= 8; h |= x; h=ROR32(h,8);
x = hash; x = t[x]; hash >>= 8; h |= x; h=ROR32(h,8);
hash = h;
#else
hash = (t16[hash >> 16] << 16) + t16[(uint16_t)hash];
#endif
}
// output
return hash;
} --- pearson_hash_32 for later use --- */
// 16-bit hash: the return value has to be interpreted as uint16_t and
// follows machine-specific endianess in memory
uint16_t pearson_hash_16 (const uint8_t *in, size_t len) { uint16_t pearson_hash_16 (const uint8_t *in, size_t len) {
size_t i;
uint16_t hash = 0;
uint16_t hash_mask = 0x0100;
for (i = 0; i < len; i++) {
// broadcast the character, xor into hash, make them different permutations
uint16_t c = (uint8_t)in[i];
c |= c << 8;
hash ^= c ^ hash_mask;
// table lookup
#ifdef LOW_MEM_FOOTPRINT
hash = t[(uint8_t)hash] + (t[hash >> 8] << 8);
#else
hash = t16[hash];
#endif
}
// output
return hash;
}
void pearson_hash_init () { return pearson_hash_64(in, len);
}
#ifndef LOW_MEM_FOOTPRINT void pearson_hash_init(void) {
size_t i;
for (i = 0; i < 65536; i++)
t16[i] = (t[i >> 8] << 8) + t[(uint8_t)i];
#endif
} }
 End of changes. 12 change blocks. 
346 lines changed or deleted 180 lines changed or added

Home  |  About  |  Features  |  All  |  Newest  |  Dox  |  Diffs  |  RSS Feeds  |  Screenshots  |  Comments  |  Imprint  |  Privacy  |  HTTP(S)