"Fossies" - the Fresh Open Source Software Archive  

Source code changes of the file "zlib/zlib/zlib.h" between
muscle7.61.zip and muscle7.62.zip

About: MUSCLE (Multi User Server Client Linking Environment) is a messaging server and networking API. The included server program ("muscled") lets its clients message each other, and/or store information in its serverside hierarchical database.

zlib.h  (muscle7.61):zlib.h  (muscle7.62)
/* zlib.h -- interface of the 'zlib' general purpose compression library /* zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.8, April 28th, 2013 version 1.2.11, January 15th, 2017
Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages warranty. In no event will the authors be held liable for any damages
arising from the use of this software. arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions: freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not 1. The origin of this software must not be misrepresented; you must not
skipping to change at line 39 skipping to change at line 39
#ifndef ZLIB_H #ifndef ZLIB_H
#define ZLIB_H #define ZLIB_H
#include "zconf.h" #include "zconf.h"
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
#define ZLIB_VERSION "1.2.8" #define ZLIB_VERSION "1.2.11"
#define ZLIB_VERNUM 0x1280 #define ZLIB_VERNUM 0x12b0
#define ZLIB_VER_MAJOR 1 #define ZLIB_VER_MAJOR 1
#define ZLIB_VER_MINOR 2 #define ZLIB_VER_MINOR 2
#define ZLIB_VER_REVISION 8 #define ZLIB_VER_REVISION 11
#define ZLIB_VER_SUBREVISION 0 #define ZLIB_VER_SUBREVISION 0
/* /*
The 'zlib' compression library provides in-memory compression and The 'zlib' compression library provides in-memory compression and
decompression functions, including integrity checks of the uncompressed data. decompression functions, including integrity checks of the uncompressed data.
This version of the library supports only one compression method (deflation) This version of the library supports only one compression method (deflation)
but other algorithms will be added later and will have the same stream but other algorithms will be added later and will have the same stream
interface. interface.
Compression can be done in a single step if the buffers are large enough, Compression can be done in a single step if the buffers are large enough,
skipping to change at line 67 skipping to change at line 67
The compressed data format used by default by the in-memory functions is The compressed data format used by default by the in-memory functions is
the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
around a deflate stream, which is itself documented in RFC 1951. around a deflate stream, which is itself documented in RFC 1951.
The library also supports reading and writing files in gzip (.gz) format The library also supports reading and writing files in gzip (.gz) format
with an interface similar to that of stdio using the functions that start with an interface similar to that of stdio using the functions that start
with "gz". The gzip format is different from the zlib format. gzip is a with "gz". The gzip format is different from the zlib format. gzip is a
gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.
This library can optionally read and write gzip streams in memory as well. This library can optionally read and write gzip and raw deflate streams in
memory as well.
The zlib format was designed to be compact and fast for use in memory The zlib format was designed to be compact and fast for use in memory
and on communications channels. The gzip format was designed for single- and on communications channels. The gzip format was designed for single-
file compression on file systems, has a larger header than zlib to maintain file compression on file systems, has a larger header than zlib to maintain
directory information, and uses a different, slower check method than zlib. directory information, and uses a different, slower check method than zlib.
The library does not install any signal handler. The decoder checks The library does not install any signal handler. The decoder checks
the consistency of the compressed data, so the library should never crash the consistency of the compressed data, so the library should never crash
even in case of corrupted input. even in the case of corrupted input.
*/ */
typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size)); typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
typedef void (*free_func) OF((voidpf opaque, voidpf address)); typedef void (*free_func) OF((voidpf opaque, voidpf address));
struct internal_state; struct internal_state;
typedef struct z_stream_s { typedef struct z_stream_s {
z_const Bytef *next_in; /* next input byte */ z_const Bytef *next_in; /* next input byte */
uInt avail_in; /* number of bytes available at next_in */ uInt avail_in; /* number of bytes available at next_in */
uLong total_in; /* total number of input bytes read so far */ uLong total_in; /* total number of input bytes read so far */
Bytef *next_out; /* next output byte should be put there */ Bytef *next_out; /* next output byte will go here */
uInt avail_out; /* remaining free space at next_out */ uInt avail_out; /* remaining free space at next_out */
uLong total_out; /* total number of bytes output so far */ uLong total_out; /* total number of bytes output so far */
z_const char *msg; /* last error message, NULL if no error */ z_const char *msg; /* last error message, NULL if no error */
struct internal_state FAR *state; /* not visible by applications */ struct internal_state FAR *state; /* not visible by applications */
alloc_func zalloc; /* used to allocate the internal state */ alloc_func zalloc; /* used to allocate the internal state */
free_func zfree; /* used to free the internal state */ free_func zfree; /* used to free the internal state */
voidpf opaque; /* private data object passed to zalloc and zfree */ voidpf opaque; /* private data object passed to zalloc and zfree */
int data_type; /* best guess about the data type: binary or text */ int data_type; /* best guess about the data type: binary or text
uLong adler; /* adler32 value of the uncompressed data */ for deflate, or the decoding state for inflate */
uLong adler; /* Adler-32 or CRC-32 value of the uncompressed data */
uLong reserved; /* reserved for future use */ uLong reserved; /* reserved for future use */
} z_stream; } z_stream;
typedef z_stream FAR *z_streamp; typedef z_stream FAR *z_streamp;
/* /*
gzip header information passed to and from zlib routines. See RFC 1952 gzip header information passed to and from zlib routines. See RFC 1952
for more details on the meanings of these fields. for more details on the meanings of these fields.
*/ */
typedef struct gz_header_s { typedef struct gz_header_s {
skipping to change at line 144 skipping to change at line 146
calling the init function. All other fields are set by the compression calling the init function. All other fields are set by the compression
library and must not be updated by the application. library and must not be updated by the application.
The opaque value provided by the application will be passed as the first The opaque value provided by the application will be passed as the first
parameter for calls of zalloc and zfree. This can be useful for custom parameter for calls of zalloc and zfree. This can be useful for custom
memory management. The compression library attaches no meaning to the memory management. The compression library attaches no meaning to the
opaque value. opaque value.
zalloc must return Z_NULL if there is not enough memory for the object. zalloc must return Z_NULL if there is not enough memory for the object.
If zlib is used in a multi-threaded application, zalloc and zfree must be If zlib is used in a multi-threaded application, zalloc and zfree must be
thread safe. thread safe. In that case, zlib is thread-safe. When zalloc and zfree are
Z_NULL on entry to the initialization function, they are set to internal
routines that use the standard library functions malloc() and free().
On 16-bit systems, the functions zalloc and zfree must be able to allocate On 16-bit systems, the functions zalloc and zfree must be able to allocate
exactly 65536 bytes, but will not be required to allocate more than this if exactly 65536 bytes, but will not be required to allocate more than this if
the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers
returned by zalloc for objects of exactly 65536 bytes *must* have their returned by zalloc for objects of exactly 65536 bytes *must* have their
offset normalized to zero. The default allocation function provided by this offset normalized to zero. The default allocation function provided by this
library ensures this (see zutil.c). To reduce memory requirements and avoid library ensures this (see zutil.c). To reduce memory requirements and avoid
any allocation of 64K objects, at the expense of compression ratio, compile any allocation of 64K objects, at the expense of compression ratio, compile
the library with -DMAX_WBITS=14 (see zconf.h). the library with -DMAX_WBITS=14 (see zconf.h).
The fields total_in and total_out can be used for statistics or progress The fields total_in and total_out can be used for statistics or progress
reports. After compression, total_in holds the total size of the reports. After compression, total_in holds the total size of the
uncompressed data and may be saved for use in the decompressor (particularly uncompressed data and may be saved for use by the decompressor (particularly
if the decompressor wants to decompress everything in a single step). if the decompressor wants to decompress everything in a single step).
*/ */
/* constants */ /* constants */
#define Z_NO_FLUSH 0 #define Z_NO_FLUSH 0
#define Z_PARTIAL_FLUSH 1 #define Z_PARTIAL_FLUSH 1
#define Z_SYNC_FLUSH 2 #define Z_SYNC_FLUSH 2
#define Z_FULL_FLUSH 3 #define Z_FULL_FLUSH 3
#define Z_FINISH 4 #define Z_FINISH 4
skipping to change at line 202 skipping to change at line 206
#define Z_HUFFMAN_ONLY 2 #define Z_HUFFMAN_ONLY 2
#define Z_RLE 3 #define Z_RLE 3
#define Z_FIXED 4 #define Z_FIXED 4
#define Z_DEFAULT_STRATEGY 0 #define Z_DEFAULT_STRATEGY 0
/* compression strategy; see deflateInit2() below for details */ /* compression strategy; see deflateInit2() below for details */
#define Z_BINARY 0 #define Z_BINARY 0
#define Z_TEXT 1 #define Z_TEXT 1
#define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */ #define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */
#define Z_UNKNOWN 2 #define Z_UNKNOWN 2
/* Possible values of the data_type field (though see inflate()) */ /* Possible values of the data_type field for deflate() */
#define Z_DEFLATED 8 #define Z_DEFLATED 8
/* The deflate compression method (the only one supported in this version) */ /* The deflate compression method (the only one supported in this version) */
#define Z_NULL 0 /* for initializing zalloc, zfree, opaque */ #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */
#define zlib_version zlibVersion() #define zlib_version zlibVersion()
/* for compatibility with versions < 1.0.2 */ /* for compatibility with versions < 1.0.2 */
/* basic functions */ /* basic functions */
skipping to change at line 258 skipping to change at line 262
forced to flush. forced to flush.
The detailed semantics are as follows. deflate performs one or both of the The detailed semantics are as follows. deflate performs one or both of the
following actions: following actions:
- Compress more input starting at next_in and update next_in and avail_in - Compress more input starting at next_in and update next_in and avail_in
accordingly. If not all input can be processed (because there is not accordingly. If not all input can be processed (because there is not
enough room in the output buffer), next_in and avail_in are updated and enough room in the output buffer), next_in and avail_in are updated and
processing will resume at this point for the next call of deflate(). processing will resume at this point for the next call of deflate().
- Provide more output starting at next_out and update next_out and avail_out - Generate more output starting at next_out and update next_out and avail_out
accordingly. This action is forced if the parameter flush is non zero. accordingly. This action is forced if the parameter flush is non zero.
Forcing flush frequently degrades the compression ratio, so this parameter Forcing flush frequently degrades the compression ratio, so this parameter
should be set only when necessary (in interactive applications). Some should be set only when necessary. Some output may be provided even if
output may be provided even if flush is not set. flush is zero.
Before the call of deflate(), the application should ensure that at least Before the call of deflate(), the application should ensure that at least
one of the actions is possible, by providing more input and/or consuming more one of the actions is possible, by providing more input and/or consuming more
output, and updating avail_in or avail_out accordingly; avail_out should output, and updating avail_in or avail_out accordingly; avail_out should
never be zero before the call. The application can consume the compressed never be zero before the call. The application can consume the compressed
output when it wants, for example when the output buffer is full (avail_out output when it wants, for example when the output buffer is full (avail_out
== 0), or after each call of deflate(). If deflate returns Z_OK and with == 0), or after each call of deflate(). If deflate returns Z_OK and with
zero avail_out, it must be called again after making room in the output zero avail_out, it must be called again after making room in the output
buffer because there might be more output pending. buffer because there might be more output pending. See deflatePending(),
which can be used if desired to determine whether or not there is more ouput
in that case.
Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
decide how much data to accumulate before producing output, in order to decide how much data to accumulate before producing output, in order to
maximize compression. maximize compression.
If the parameter flush is set to Z_SYNC_FLUSH, all pending output is If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
flushed to the output buffer and the output is aligned on a byte boundary, so flushed to the output buffer and the output is aligned on a byte boundary, so
that the decompressor can get all input data available so far. (In that the decompressor can get all input data available so far. (In
particular avail_in is zero after the call if enough output space has been particular avail_in is zero after the call if enough output space has been
provided before the call.) Flushing may degrade compression for some provided before the call.) Flushing may degrade compression for some
compression algorithms and so it should be used only when necessary. This compression algorithms and so it should be used only when necessary. This
completes the current deflate block and follows it with an empty stored block completes the current deflate block and follows it with an empty stored block
that is three bits plus filler bits to the next byte, followed by four bytes that is three bits plus filler bits to the next byte, followed by four bytes
(00 00 ff ff). (00 00 ff ff).
If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the
output buffer, but the output is not aligned to a byte boundary. All of the output buffer, but the output is not aligned to a byte boundary. All of the
input data so far will be available to the decompressor, as for Z_SYNC_FLUSH. input data so far will be available to the decompressor, as for Z_SYNC_FLUSH.
This completes the current deflate block and follows it with an empty fixed This completes the current deflate block and follows it with an empty fixed
codes block that is 10 bits long. This assures that enough bytes are output codes block that is 10 bits long. This assures that enough bytes are output
in order for the decompressor to finish the block before the empty fixed code in order for the decompressor to finish the block before the empty fixed
block. codes block.
If flush is set to Z_BLOCK, a deflate block is completed and emitted, as If flush is set to Z_BLOCK, a deflate block is completed and emitted, as
for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to
seven bits of the current block are held to be written as the next byte after seven bits of the current block are held to be written as the next byte after
the next deflate block is completed. In this case, the decompressor may not the next deflate block is completed. In this case, the decompressor may not
be provided enough bits at this point in order to complete decompression of be provided enough bits at this point in order to complete decompression of
the data provided so far to the compressor. It may need to wait for the next the data provided so far to the compressor. It may need to wait for the next
block to be emitted. This is for advanced applications that need to control block to be emitted. This is for advanced applications that need to control
the emission of deflate blocks. the emission of deflate blocks.
skipping to change at line 319 skipping to change at line 325
If deflate returns with avail_out == 0, this function must be called again If deflate returns with avail_out == 0, this function must be called again
with the same value of the flush parameter and more output space (updated with the same value of the flush parameter and more output space (updated
avail_out), until the flush is complete (deflate returns with non-zero avail_out), until the flush is complete (deflate returns with non-zero
avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
avail_out is greater than six to avoid repeated flush markers due to avail_out is greater than six to avoid repeated flush markers due to
avail_out == 0 on return. avail_out == 0 on return.
If the parameter flush is set to Z_FINISH, pending input is processed, If the parameter flush is set to Z_FINISH, pending input is processed,
pending output is flushed and deflate returns with Z_STREAM_END if there was pending output is flushed and deflate returns with Z_STREAM_END if there was
enough output space; if deflate returns with Z_OK, this function must be enough output space. If deflate returns with Z_OK or Z_BUF_ERROR, this
called again with Z_FINISH and more output space (updated avail_out) but no function must be called again with Z_FINISH and more output space (updated
more input data, until it returns with Z_STREAM_END or an error. After avail_out) but no more input data, until it returns with Z_STREAM_END or an
deflate has returned Z_STREAM_END, the only possible operations on the stream error. After deflate has returned Z_STREAM_END, the only possible operations
are deflateReset or deflateEnd. on the stream are deflateReset or deflateEnd.
Z_FINISH can be used immediately after deflateInit if all the compression Z_FINISH can be used in the first deflate call after deflateInit if all the
is to be done in a single step. In this case, avail_out must be at least the compression is to be done in a single step. In order to complete in one
value returned by deflateBound (see below). Then deflate is guaranteed to call, avail_out must be at least the value returned by deflateBound (see
return Z_STREAM_END. If not enough output space is provided, deflate will below). Then deflate is guaranteed to return Z_STREAM_END. If not enough
not return Z_STREAM_END, and it must be called again as described above. output space is provided, deflate will not return Z_STREAM_END, and it must
be called again as described above.
deflate() sets strm->adler to the adler32 checksum of all input read
so far (that is, total_in bytes). deflate() sets strm->adler to the Adler-32 checksum of all input read
so far (that is, total_in bytes). If a gzip stream is being generated, then
strm->adler will be the CRC-32 checksum of the input read so far. (See
deflateInit2 below.)
deflate() may update strm->data_type if it can make a good guess about deflate() may update strm->data_type if it can make a good guess about
the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered the input data type (Z_BINARY or Z_TEXT). If in doubt, the data is
binary. This field is only for information purposes and does not affect the considered binary. This field is only for information purposes and does not
compression algorithm in any manner. affect the compression algorithm in any manner.
deflate() returns Z_OK if some progress has been made (more input deflate() returns Z_OK if some progress has been made (more input
processed or more output produced), Z_STREAM_END if all input has been processed or more output produced), Z_STREAM_END if all input has been
consumed and all output has been produced (only when flush is set to consumed and all output has been produced (only when flush is set to
Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible if next_in or next_out was Z_NULL or the state was inadvertently written over
(for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not by the application), or Z_BUF_ERROR if no progress is possible (for example
fatal, and deflate() can be called again with more input and more output avail_in or avail_out was zero). Note that Z_BUF_ERROR is not fatal, and
space to continue compressing. deflate() can be called again with more input and more output space to
continue compressing.
*/ */
ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm)); ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
/* /*
All dynamically allocated data structures for this stream are freed. All dynamically allocated data structures for this stream are freed.
This function discards any unprocessed input and does not flush any pending This function discards any unprocessed input and does not flush any pending
output. output.
deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
stream state was inconsistent, Z_DATA_ERROR if the stream was freed stream state was inconsistent, Z_DATA_ERROR if the stream was freed
prematurely (some input or output was discarded). In the error case, msg prematurely (some input or output was discarded). In the error case, msg
may be set but then points to a static string (which must not be may be set but then points to a static string (which must not be
deallocated). deallocated).
*/ */
/* /*
ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm)); ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
Initializes the internal stream state for decompression. The fields Initializes the internal stream state for decompression. The fields
next_in, avail_in, zalloc, zfree and opaque must be initialized before by next_in, avail_in, zalloc, zfree and opaque must be initialized before by
the caller. If next_in is not Z_NULL and avail_in is large enough (the the caller. In the current version of inflate, the provided input is not
exact value depends on the compression method), inflateInit determines the read or consumed. The allocation of a sliding window will be deferred to
compression method from the zlib header and allocates all data structures the first call of inflate (if the decompression does not complete on the
accordingly; otherwise the allocation will be deferred to the first call of first call). If zalloc and zfree are set to Z_NULL, inflateInit updates
inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to them to use default allocation functions.
use default allocation functions.
inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_VERSION_ERROR if the zlib library version is incompatible with the memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
version assumed by the caller, or Z_STREAM_ERROR if the parameters are version assumed by the caller, or Z_STREAM_ERROR if the parameters are
invalid, such as a null pointer to the structure. msg is set to null if invalid, such as a null pointer to the structure. msg is set to null if
there is no error message. inflateInit does not perform any decompression there is no error message. inflateInit does not perform any decompression.
apart from possibly reading the zlib header if present: actual decompression Actual decompression will be done by inflate(). So next_in, and avail_in,
will be done by inflate(). (So next_in and avail_in may be modified, but next_out, and avail_out are unused and unchanged. The current
next_out and avail_out are unused and unchanged.) The current implementation implementation of inflateInit() does not process any header information --
of inflateInit() does not process any header information -- that is deferred that is deferred until inflate() is called.
until inflate() is called.
*/ */
ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush)); ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
/* /*
inflate decompresses as much data as possible, and stops when the input inflate decompresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full. It may introduce buffer becomes empty or the output buffer becomes full. It may introduce
some output latency (reading input without producing any output) except when some output latency (reading input without producing any output) except when
forced to flush. forced to flush.
The detailed semantics are as follows. inflate performs one or both of the The detailed semantics are as follows. inflate performs one or both of the
following actions: following actions:
- Decompress more input starting at next_in and update next_in and avail_in - Decompress more input starting at next_in and update next_in and avail_in
accordingly. If not all input can be processed (because there is not accordingly. If not all input can be processed (because there is not
enough room in the output buffer), next_in is updated and processing will enough room in the output buffer), then next_in and avail_in are updated
resume at this point for the next call of inflate(). accordingly, and processing will resume at this point for the next call of
inflate().
- Provide more output starting at next_out and update next_out and avail_out - Generate more output starting at next_out and update next_out and avail_out
accordingly. inflate() provides as much output as possible, until there is accordingly. inflate() provides as much output as possible, until there is
no more input data or no more space in the output buffer (see below about no more input data or no more space in the output buffer (see below about
the flush parameter). the flush parameter).
Before the call of inflate(), the application should ensure that at least Before the call of inflate(), the application should ensure that at least
one of the actions is possible, by providing more input and/or consuming more one of the actions is possible, by providing more input and/or consuming more
output, and updating the next_* and avail_* values accordingly. The output, and updating the next_* and avail_* values accordingly. If the
caller of inflate() does not provide both available input and available
output space, it is possible that there will be no progress made. The
application can consume the uncompressed output when it wants, for example application can consume the uncompressed output when it wants, for example
when the output buffer is full (avail_out == 0), or after each call of when the output buffer is full (avail_out == 0), or after each call of
inflate(). If inflate returns Z_OK and with zero avail_out, it must be inflate(). If inflate returns Z_OK and with zero avail_out, it must be
called again after making room in the output buffer because there might be called again after making room in the output buffer because there might be
more output pending. more output pending.
The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH, The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH,
Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much
output as possible to the output buffer. Z_BLOCK requests that inflate() output as possible to the output buffer. Z_BLOCK requests that inflate()
stop if and when it gets to the next deflate block boundary. When decoding stop if and when it gets to the next deflate block boundary. When decoding
the zlib or gzip format, this will cause inflate() to return immediately the zlib or gzip format, this will cause inflate() to return immediately
after the header and before the first block. When doing a raw inflate, after the header and before the first block. When doing a raw inflate,
inflate() will go ahead and process the first block, and will return when it inflate() will go ahead and process the first block, and will return when it
gets to the end of that block, or when it runs out of data. gets to the end of that block, or when it runs out of data.
The Z_BLOCK option assists in appending to or combining deflate streams. The Z_BLOCK option assists in appending to or combining deflate streams.
Also to assist in this, on return inflate() will set strm->data_type to the To assist in this, on return inflate() always sets strm->data_type to the
number of unused bits in the last byte taken from strm->next_in, plus 64 if number of unused bits in the last byte taken from strm->next_in, plus 64 if
inflate() is currently decoding the last block in the deflate stream, plus inflate() is currently decoding the last block in the deflate stream, plus
128 if inflate() returned immediately after decoding an end-of-block code or 128 if inflate() returned immediately after decoding an end-of-block code or
decoding the complete header up to just before the first byte of the deflate decoding the complete header up to just before the first byte of the deflate
stream. The end-of-block will not be indicated until all of the uncompressed stream. The end-of-block will not be indicated until all of the uncompressed
data from that block has been written to strm->next_out. The number of data from that block has been written to strm->next_out. The number of
unused bits may in general be greater than seven, except when bit 7 of unused bits may in general be greater than seven, except when bit 7 of
data_type is set, in which case the number of unused bits will be less than data_type is set, in which case the number of unused bits will be less than
eight. data_type is set as noted here every time inflate() returns for all eight. data_type is set as noted here every time inflate() returns for all
flush options, and so can be used to determine the amount of currently flush options, and so can be used to determine the amount of currently
skipping to change at line 451 skipping to change at line 462
deflate block header for later use in random access within a deflate block. deflate block header for later use in random access within a deflate block.
256 is added to the value of strm->data_type when inflate() returns 256 is added to the value of strm->data_type when inflate() returns
immediately after reaching the end of the deflate block header. immediately after reaching the end of the deflate block header.
inflate() should normally be called until it returns Z_STREAM_END or an inflate() should normally be called until it returns Z_STREAM_END or an
error. However if all decompression is to be performed in a single step (a error. However if all decompression is to be performed in a single step (a
single call of inflate), the parameter flush should be set to Z_FINISH. In single call of inflate), the parameter flush should be set to Z_FINISH. In
this case all pending input is processed and all pending output is flushed; this case all pending input is processed and all pending output is flushed;
avail_out must be large enough to hold all of the uncompressed data for the avail_out must be large enough to hold all of the uncompressed data for the
operation to complete. (The size of the uncompressed data may have been operation to complete. (The size of the uncompressed data may have been
saved by the compressor for this purpose.) The use of Z_FINISH is not saved by the compressor for this purpose.) The use of Z_FINISH is not
required to perform an inflation in one step. However it may be used to required to perform an inflation in one step. However it may be used to
inform inflate that a faster approach can be used for the single inflate() inform inflate that a faster approach can be used for the single inflate()
call. Z_FINISH also informs inflate to not maintain a sliding window if the call. Z_FINISH also informs inflate to not maintain a sliding window if the
stream completes, which reduces inflate's memory footprint. If the stream stream completes, which reduces inflate's memory footprint. If the stream
does not complete, either because not all of the stream is provided or not does not complete, either because not all of the stream is provided or not
enough output space is provided, then a sliding window will be allocated and enough output space is provided, then a sliding window will be allocated and
inflate() can be called again to continue the operation as if Z_NO_FLUSH had inflate() can be called again to continue the operation as if Z_NO_FLUSH had
been used. been used.
In this implementation, inflate() always flushes as much output as In this implementation, inflate() always flushes as much output as
skipping to change at line 473 skipping to change at line 484
first call. So the effects of the flush parameter in this implementation are first call. So the effects of the flush parameter in this implementation are
on the return value of inflate() as noted below, when inflate() returns early on the return value of inflate() as noted below, when inflate() returns early
when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of
memory for a sliding window when Z_FINISH is used. memory for a sliding window when Z_FINISH is used.
If a preset dictionary is needed after this call (see inflateSetDictionary If a preset dictionary is needed after this call (see inflateSetDictionary
below), inflate sets strm->adler to the Adler-32 checksum of the dictionary below), inflate sets strm->adler to the Adler-32 checksum of the dictionary
chosen by the compressor and returns Z_NEED_DICT; otherwise it sets chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
strm->adler to the Adler-32 checksum of all output produced so far (that is, strm->adler to the Adler-32 checksum of all output produced so far (that is,
total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
below. At the end of the stream, inflate() checks that its computed adler32 below. At the end of the stream, inflate() checks that its computed Adler-32
checksum is equal to that saved by the compressor and returns Z_STREAM_END checksum is equal to that saved by the compressor and returns Z_STREAM_END
only if the checksum is correct. only if the checksum is correct.
inflate() can decompress and check either zlib-wrapped or gzip-wrapped inflate() can decompress and check either zlib-wrapped or gzip-wrapped
deflate data. The header type is detected automatically, if requested when deflate data. The header type is detected automatically, if requested when
initializing with inflateInit2(). Any information contained in the gzip initializing with inflateInit2(). Any information contained in the gzip
header is not retained, so applications that need that information should header is not retained unless inflateGetHeader() is used. When processing
instead use raw inflate, see inflateInit2() below, or inflateBack() and
perform their own processing of the gzip header and trailer. When processing
gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output
producted so far. The CRC-32 is checked against the gzip trailer. produced so far. The CRC-32 is checked against the gzip trailer, as is the
uncompressed length, modulo 2^32.
inflate() returns Z_OK if some progress has been made (more input processed inflate() returns Z_OK if some progress has been made (more input processed
or more output produced), Z_STREAM_END if the end of the compressed data has or more output produced), Z_STREAM_END if the end of the compressed data has
been reached and all uncompressed output has been produced, Z_NEED_DICT if a been reached and all uncompressed output has been produced, Z_NEED_DICT if a
preset dictionary is needed at this point, Z_DATA_ERROR if the input data was preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
corrupted (input stream not conforming to the zlib format or incorrect check corrupted (input stream not conforming to the zlib format or incorrect check
value), Z_STREAM_ERROR if the stream structure was inconsistent (for example value, in which case strm->msg points to a string with a more specific
next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory, error), Z_STREAM_ERROR if the stream structure was inconsistent (for example
Z_BUF_ERROR if no progress is possible or if there was not enough room in the next_in or next_out was Z_NULL, or the state was inadvertently written over
output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and by the application), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR
if no progress was possible or if there was not enough room in the output
buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and
inflate() can be called again with more input and more output space to inflate() can be called again with more input and more output space to
continue decompressing. If Z_DATA_ERROR is returned, the application may continue decompressing. If Z_DATA_ERROR is returned, the application may
then call inflateSync() to look for a good compression block if a partial then call inflateSync() to look for a good compression block if a partial
recovery of the data is desired. recovery of the data is to be attempted.
*/ */
ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm)); ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
/* /*
All dynamically allocated data structures for this stream are freed. All dynamically allocated data structures for this stream are freed.
This function discards any unprocessed input and does not flush any pending This function discards any unprocessed input and does not flush any pending
output. output.
inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state inflateEnd returns Z_OK if success, or Z_STREAM_ERROR if the stream state
was inconsistent. In the error case, msg may be set but then points to a was inconsistent.
static string (which must not be deallocated).
*/ */
/* Advanced functions */ /* Advanced functions */
/* /*
The following functions are needed only in some special applications. The following functions are needed only in some special applications.
*/ */
/* /*
ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm, ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
skipping to change at line 539 skipping to change at line 550
The method parameter is the compression method. It must be Z_DEFLATED in The method parameter is the compression method. It must be Z_DEFLATED in
this version of the library. this version of the library.
The windowBits parameter is the base two logarithm of the window size The windowBits parameter is the base two logarithm of the window size
(the size of the history buffer). It should be in the range 8..15 for this (the size of the history buffer). It should be in the range 8..15 for this
version of the library. Larger values of this parameter result in better version of the library. Larger values of this parameter result in better
compression at the expense of memory usage. The default value is 15 if compression at the expense of memory usage. The default value is 15 if
deflateInit is used instead. deflateInit is used instead.
For the current implementation of deflate(), a windowBits value of 8 (a
window size of 256 bytes) is not supported. As a result, a request for 8
will result in 9 (a 512-byte window). In that case, providing 8 to
inflateInit2() will result in an error when the zlib header with 9 is
checked against the initialization of inflate(). The remedy is to not use 8
with deflateInit2() with this initialization, or at least in that case use 9
with inflateInit2().
windowBits can also be -8..-15 for raw deflate. In this case, -windowBits windowBits can also be -8..-15 for raw deflate. In this case, -windowBits
determines the window size. deflate() will then generate raw deflate data determines the window size. deflate() will then generate raw deflate data
with no zlib header or trailer, and will not compute an adler32 check value. with no zlib header or trailer, and will not compute a check value.
windowBits can also be greater than 15 for optional gzip encoding. Add windowBits can also be greater than 15 for optional gzip encoding. Add
16 to windowBits to write a simple gzip header and trailer around the 16 to windowBits to write a simple gzip header and trailer around the
compressed data instead of a zlib wrapper. The gzip header will have no compressed data instead of a zlib wrapper. The gzip header will have no
file name, no extra data, no comment, no modification time (set to zero), no file name, no extra data, no comment, no modification time (set to zero), no
header crc, and the operating system will be set to 255 (unknown). If a header crc, and the operating system will be set to the appropriate value,
gzip stream is being written, strm->adler is a crc32 instead of an adler32. if the operating system was determined at compile time. If a gzip stream is
being written, strm->adler is a CRC-32 instead of an Adler-32.
For raw deflate or gzip encoding, a request for a 256-byte window is
rejected as invalid, since only the zlib header provides a means of
transmitting the window size to the decompressor.
The memLevel parameter specifies how much memory should be allocated The memLevel parameter specifies how much memory should be allocated
for the internal compression state. memLevel=1 uses minimum memory but is for the internal compression state. memLevel=1 uses minimum memory but is
slow and reduces compression ratio; memLevel=9 uses maximum memory for slow and reduces compression ratio; memLevel=9 uses maximum memory for
optimal speed. The default value is 8. See zconf.h for total memory usage optimal speed. The default value is 8. See zconf.h for total memory usage
as a function of windowBits and memLevel. as a function of windowBits and memLevel.
The strategy parameter is used to tune the compression algorithm. Use the The strategy parameter is used to tune the compression algorithm. Use the
value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no
skipping to change at line 609 skipping to change at line 633
with the default empty dictionary. with the default empty dictionary.
Depending on the size of the compression data structures selected by Depending on the size of the compression data structures selected by
deflateInit or deflateInit2, a part of the dictionary may in effect be deflateInit or deflateInit2, a part of the dictionary may in effect be
discarded, for example if the dictionary is larger than the window size discarded, for example if the dictionary is larger than the window size
provided in deflateInit or deflateInit2. Thus the strings most likely to be provided in deflateInit or deflateInit2. Thus the strings most likely to be
useful should be put at the end of the dictionary, not at the front. In useful should be put at the end of the dictionary, not at the front. In
addition, the current implementation of deflate will use at most the window addition, the current implementation of deflate will use at most the window
size minus 262 bytes of the provided dictionary. size minus 262 bytes of the provided dictionary.
Upon return of this function, strm->adler is set to the adler32 value Upon return of this function, strm->adler is set to the Adler-32 value
of the dictionary; the decompressor may later use this value to determine of the dictionary; the decompressor may later use this value to determine
which dictionary has been used by the compressor. (The adler32 value which dictionary has been used by the compressor. (The Adler-32 value
applies to the whole dictionary even if only a subset of the dictionary is applies to the whole dictionary even if only a subset of the dictionary is
actually used by the compressor.) If a raw deflate was requested, then the actually used by the compressor.) If a raw deflate was requested, then the
adler32 value is not computed and strm->adler is not set. Adler-32 value is not computed and strm->adler is not set.
deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is
inconsistent (for example if deflate has already been called for this stream inconsistent (for example if deflate has already been called for this stream
or if not at a block boundary for raw deflate). deflateSetDictionary does or if not at a block boundary for raw deflate). deflateSetDictionary does
not perform any compression: this will be done by deflate(). not perform any compression: this will be done by deflate().
*/ */
ZEXTERN int ZEXPORT deflateGetDictionary OF((z_streamp strm,
Bytef *dictionary,
uInt *dictLength));
/*
Returns the sliding dictionary being maintained by deflate. dictLength is
set to the number of bytes in the dictionary, and that many bytes are copied
to dictionary. dictionary must have enough space, where 32768 bytes is
always enough. If deflateGetDictionary() is called with dictionary equal to
Z_NULL, then only the dictionary length is returned, and nothing is copied.
Similary, if dictLength is Z_NULL, then it is not set.
deflateGetDictionary() may return a length less than the window size, even
when more than the window size in input has been provided. It may return up
to 258 bytes less in that case, due to how zlib's implementation of deflate
manages the sliding window and lookahead for matches, where matches can be
up to 258 bytes long. If the application needs the last window-size bytes of
input, then that would need to be saved by the application outside of zlib.
deflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the
stream state is inconsistent.
*/
ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest, ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
z_streamp source)); z_streamp source));
/* /*
Sets the destination stream as a complete copy of the source stream. Sets the destination stream as a complete copy of the source stream.
This function can be useful when several compression strategies will be This function can be useful when several compression strategies will be
tried, for example when there are several ways of pre-processing the input tried, for example when there are several ways of pre-processing the input
data with a filter. The streams that will be discarded should then be freed data with a filter. The streams that will be discarded should then be freed
by calling deflateEnd. Note that deflateCopy duplicates the internal by calling deflateEnd. Note that deflateCopy duplicates the internal
compression state which can be quite large, so this strategy is slow and can compression state which can be quite large, so this strategy is slow and can
consume lots of memory. consume lots of memory.
deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_STREAM_ERROR if the source stream state was inconsistent enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
(such as zalloc being Z_NULL). msg is left unchanged in both source and (such as zalloc being Z_NULL). msg is left unchanged in both source and
destination. destination.
*/ */
ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm)); ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm));
/* /*
This function is equivalent to deflateEnd followed by deflateInit, This function is equivalent to deflateEnd followed by deflateInit, but
but does not free and reallocate all the internal compression state. The does not free and reallocate the internal compression state. The stream
stream will keep the same compression level and any other attributes that will leave the compression level and any other attributes that may have been
may have been set by deflateInit2. set unchanged.
deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent (such as zalloc or state being Z_NULL). stream state was inconsistent (such as zalloc or state being Z_NULL).
*/ */
ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm, ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
int level, int level,
int strategy)); int strategy));
/* /*
Dynamically update the compression level and compression strategy. The Dynamically update the compression level and compression strategy. The
interpretation of level and strategy is as in deflateInit2. This can be interpretation of level and strategy is as in deflateInit2(). This can be
used to switch between compression and straight copy of the input data, or used to switch between compression and straight copy of the input data, or
to switch to a different kind of input data requiring a different strategy. to switch to a different kind of input data requiring a different strategy.
If the compression level is changed, the input available so far is If the compression approach (which is a function of the level) or the
compressed with the old level (and may be flushed); the new level will take strategy is changed, and if any input has been consumed in a previous
effect only at the next call of deflate(). deflate() call, then the input available so far is compressed with the old
level and strategy using deflate(strm, Z_BLOCK). There are three approaches
Before the call of deflateParams, the stream state must be set as for for the compression levels 0, 1..3, and 4..9 respectively. The new level
a call of deflate(), since the currently available input may have to be and strategy will take effect at the next call of deflate().
compressed and flushed. In particular, strm->avail_out must be non-zero.
If a deflate(strm, Z_BLOCK) is performed by deflateParams(), and it does
deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source not have enough output space to complete, then the parameter change will not
stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if take effect. In this case, deflateParams() can be called again with the
strm->avail_out was zero. same parameters and more output space to try again.
In order to assure a change in the parameters on the first try, the
deflate stream should be flushed using deflate() with Z_BLOCK or other flush
request until strm.avail_out is not zero, before calling deflateParams().
Then no more input data should be provided before the deflateParams() call.
If this is done, the old level and strategy will be applied to the data
compressed before deflateParams(), and the new level and strategy will be
applied to the the data compressed after deflateParams().
deflateParams returns Z_OK on success, Z_STREAM_ERROR if the source stream
state was inconsistent or if a parameter was invalid, or Z_BUF_ERROR if
there was not enough output space to complete the compression of the
available input data before a change in the strategy or approach. Note that
in the case of a Z_BUF_ERROR, the parameters are not changed. A return
value of Z_BUF_ERROR is not fatal, in which case deflateParams() can be
retried with more output space.
*/ */
ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm, ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm,
int good_length, int good_length,
int max_lazy, int max_lazy,
int nice_length, int nice_length,
int max_chain)); int max_chain));
/* /*
Fine tune deflate's internal compression parameters. This should only be Fine tune deflate's internal compression parameters. This should only be
used by someone who understands the algorithm used by zlib's deflate for used by someone who understands the algorithm used by zlib's deflate for
skipping to change at line 788 skipping to change at line 850
windowBits can also be zero to request that inflate use the window size in windowBits can also be zero to request that inflate use the window size in
the zlib header of the compressed stream. the zlib header of the compressed stream.
windowBits can also be -8..-15 for raw inflate. In this case, -windowBits windowBits can also be -8..-15 for raw inflate. In this case, -windowBits
determines the window size. inflate() will then process raw deflate data, determines the window size. inflate() will then process raw deflate data,
not looking for a zlib or gzip header, not generating a check value, and not not looking for a zlib or gzip header, not generating a check value, and not
looking for any check values for comparison at the end of the stream. This looking for any check values for comparison at the end of the stream. This
is for use with other formats that use the deflate compressed data format is for use with other formats that use the deflate compressed data format
such as zip. Those formats provide their own check values. If a custom such as zip. Those formats provide their own check values. If a custom
format is developed using the raw deflate format for compressed data, it is format is developed using the raw deflate format for compressed data, it is
recommended that a check value such as an adler32 or a crc32 be applied to recommended that a check value such as an Adler-32 or a CRC-32 be applied to
the uncompressed data as is done in the zlib, gzip, and zip formats. For the uncompressed data as is done in the zlib, gzip, and zip formats. For
most applications, the zlib format should be used as is. Note that comments most applications, the zlib format should be used as is. Note that comments
above on the use in deflateInit2() applies to the magnitude of windowBits. above on the use in deflateInit2() applies to the magnitude of windowBits.
windowBits can also be greater than 15 for optional gzip decoding. Add windowBits can also be greater than 15 for optional gzip decoding. Add
32 to windowBits to enable zlib and gzip decoding with automatic header 32 to windowBits to enable zlib and gzip decoding with automatic header
detection, or add 16 to decode only the gzip format (the zlib format will detection, or add 16 to decode only the gzip format (the zlib format will
return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a
crc32 instead of an adler32. CRC-32 instead of an Adler-32. Unlike the gunzip utility and gzread() (see
below), inflate() will not automatically decode concatenated gzip streams.
inflate() will return Z_STREAM_END at the end of the gzip stream. The state
would need to be reset to continue decoding a subsequent gzip stream.
inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_VERSION_ERROR if the zlib library version is incompatible with the memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
version assumed by the caller, or Z_STREAM_ERROR if the parameters are version assumed by the caller, or Z_STREAM_ERROR if the parameters are
invalid, such as a null pointer to the structure. msg is set to null if invalid, such as a null pointer to the structure. msg is set to null if
there is no error message. inflateInit2 does not perform any decompression there is no error message. inflateInit2 does not perform any decompression
apart from possibly reading the zlib header if present: actual decompression apart from possibly reading the zlib header if present: actual decompression
will be done by inflate(). (So next_in and avail_in may be modified, but will be done by inflate(). (So next_in and avail_in may be modified, but
next_out and avail_out are unused and unchanged.) The current implementation next_out and avail_out are unused and unchanged.) The current implementation
of inflateInit2() does not process any header information -- that is of inflateInit2() does not process any header information -- that is
deferred until inflate() is called. deferred until inflate() is called.
*/ */
ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm, ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
const Bytef *dictionary, const Bytef *dictionary,
uInt dictLength)); uInt dictLength));
/* /*
Initializes the decompression dictionary from the given uncompressed byte Initializes the decompression dictionary from the given uncompressed byte
sequence. This function must be called immediately after a call of inflate, sequence. This function must be called immediately after a call of inflate,
if that call returned Z_NEED_DICT. The dictionary chosen by the compressor if that call returned Z_NEED_DICT. The dictionary chosen by the compressor
can be determined from the adler32 value returned by that call of inflate. can be determined from the Adler-32 value returned by that call of inflate.
The compressor and decompressor must use exactly the same dictionary (see The compressor and decompressor must use exactly the same dictionary (see
deflateSetDictionary). For raw inflate, this function can be called at any deflateSetDictionary). For raw inflate, this function can be called at any
time to set the dictionary. If the provided dictionary is smaller than the time to set the dictionary. If the provided dictionary is smaller than the
window and there is already data in the window, then the provided dictionary window and there is already data in the window, then the provided dictionary
will amend what's there. The application must insure that the dictionary will amend what's there. The application must insure that the dictionary
that was used for compression is provided. that was used for compression is provided.
inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is
inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
expected one (incorrect adler32 value). inflateSetDictionary does not expected one (incorrect Adler-32 value). inflateSetDictionary does not
perform any decompression: this will be done by subsequent calls of perform any decompression: this will be done by subsequent calls of
inflate(). inflate().
*/ */
ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm, ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm,
Bytef *dictionary, Bytef *dictionary,
uInt *dictLength)); uInt *dictLength));
/* /*
Returns the sliding dictionary being maintained by inflate. dictLength is Returns the sliding dictionary being maintained by inflate. dictLength is
set to the number of bytes in the dictionary, and that many bytes are copied set to the number of bytes in the dictionary, and that many bytes are copied
skipping to change at line 887 skipping to change at line 952
inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_STREAM_ERROR if the source stream state was inconsistent enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
(such as zalloc being Z_NULL). msg is left unchanged in both source and (such as zalloc being Z_NULL). msg is left unchanged in both source and
destination. destination.
*/ */
ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm)); ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm));
/* /*
This function is equivalent to inflateEnd followed by inflateInit, This function is equivalent to inflateEnd followed by inflateInit,
but does not free and reallocate all the internal decompression state. The but does not free and reallocate the internal decompression state. The
stream will keep attributes that may have been set by inflateInit2. stream will keep attributes that may have been set by inflateInit2.
inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent (such as zalloc or state being Z_NULL). stream state was inconsistent (such as zalloc or state being Z_NULL).
*/ */
ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm, ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm,
int windowBits)); int windowBits));
/* /*
This function is the same as inflateReset, but it also permits changing This function is the same as inflateReset, but it also permits changing
the wrap and window size requests. The windowBits parameter is interpreted the wrap and window size requests. The windowBits parameter is interpreted
the same as it is for inflateInit2. the same as it is for inflateInit2. If the window size is changed, then the
memory allocated for the window is freed, and the window will be reallocated
by inflate() if needed.
inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent (such as zalloc or state being Z_NULL), or if stream state was inconsistent (such as zalloc or state being Z_NULL), or if
the windowBits parameter is invalid. the windowBits parameter is invalid.
*/ */
ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm, ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm,
int bits, int bits,
int value)); int value));
/* /*
skipping to change at line 951 skipping to change at line 1018
A code is being processed if inflate is waiting for more input to complete A code is being processed if inflate is waiting for more input to complete
decoding of the code, or if it has completed decoding but is waiting for decoding of the code, or if it has completed decoding but is waiting for
more output space to write the literal or match data. more output space to write the literal or match data.
inflateMark() is used to mark locations in the input data for random inflateMark() is used to mark locations in the input data for random
access, which may be at bit positions, and to note those cases where the access, which may be at bit positions, and to note those cases where the
output of a code may span boundaries of random access blocks. The current output of a code may span boundaries of random access blocks. The current
location in the input stream can be determined from avail_in and data_type location in the input stream can be determined from avail_in and data_type
as noted in the description for the Z_BLOCK flush parameter for inflate. as noted in the description for the Z_BLOCK flush parameter for inflate.
inflateMark returns the value noted above or -1 << 16 if the provided inflateMark returns the value noted above, or -65536 if the provided
source stream state was inconsistent. source stream state was inconsistent.
*/ */
ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm, ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm,
gz_headerp head)); gz_headerp head));
/* /*
inflateGetHeader() requests that gzip header information be stored in the inflateGetHeader() requests that gzip header information be stored in the
provided gz_header structure. inflateGetHeader() may be called after provided gz_header structure. inflateGetHeader() may be called after
inflateInit2() or inflateReset(), and before the first call of inflate(). inflateInit2() or inflateReset(), and before the first call of inflate().
As inflate() processes the gzip stream, head->done is zero until the header As inflate() processes the gzip stream, head->done is zero until the header
skipping to change at line 1043 skipping to change at line 1110
inflateBackInit() must be called first to allocate the internal state inflateBackInit() must be called first to allocate the internal state
and to initialize the state with the user-provided window buffer. and to initialize the state with the user-provided window buffer.
inflateBack() may then be used multiple times to inflate a complete, raw inflateBack() may then be used multiple times to inflate a complete, raw
deflate stream with each call. inflateBackEnd() is then called to free the deflate stream with each call. inflateBackEnd() is then called to free the
allocated state. allocated state.
A raw deflate stream is one with no zlib or gzip header or trailer. A raw deflate stream is one with no zlib or gzip header or trailer.
This routine would normally be used in a utility that reads zip or gzip This routine would normally be used in a utility that reads zip or gzip
files and writes out uncompressed files. The utility would decode the files and writes out uncompressed files. The utility would decode the
header and process the trailer on its own, hence this routine expects only header and process the trailer on its own, hence this routine expects only
the raw deflate stream to decompress. This is different from the normal the raw deflate stream to decompress. This is different from the default
behavior of inflate(), which expects either a zlib or gzip header and behavior of inflate(), which expects a zlib header and trailer around the
trailer around the deflate stream. deflate stream.
inflateBack() uses two subroutines supplied by the caller that are then inflateBack() uses two subroutines supplied by the caller that are then
called by inflateBack() for input and output. inflateBack() calls those called by inflateBack() for input and output. inflateBack() calls those
routines until it reads a complete deflate stream and writes out all of the routines until it reads a complete deflate stream and writes out all of the
uncompressed data, or until it encounters an error. The function's uncompressed data, or until it encounters an error. The function's
parameters and return types are defined above in the in_func and out_func parameters and return types are defined above in the in_func and out_func
typedefs. inflateBack() will call in(in_desc, &buf) which should return the typedefs. inflateBack() will call in(in_desc, &buf) which should return the
number of bytes of provided input, and a pointer to that input in buf. If number of bytes of provided input, and a pointer to that input in buf. If
there is no input available, in() must return zero--buf is ignored in that there is no input available, in() must return zero -- buf is ignored in that
case--and inflateBack() will return a buffer error. inflateBack() will call case -- and inflateBack() will return a buffer error. inflateBack() will
out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out() call out(out_desc, buf, len) to write the uncompressed data buf[0..len-1].
should return zero on success, or non-zero on failure. If out() returns out() should return zero on success, or non-zero on failure. If out()
non-zero, inflateBack() will return with an error. Neither in() nor out() returns non-zero, inflateBack() will return with an error. Neither in() nor
are permitted to change the contents of the window provided to out() are permitted to change the contents of the window provided to
inflateBackInit(), which is also the buffer that out() uses to write from. inflateBackInit(), which is also the buffer that out() uses to write from.
The length written by out() will be at most the window size. Any non-zero The length written by out() will be at most the window size. Any non-zero
amount of input may be provided by in(). amount of input may be provided by in().
For convenience, inflateBack() can be provided input on the first call by For convenience, inflateBack() can be provided input on the first call by
setting strm->next_in and strm->avail_in. If that input is exhausted, then setting strm->next_in and strm->avail_in. If that input is exhausted, then
in() will be called. Therefore strm->next_in must be initialized before in() will be called. Therefore strm->next_in must be initialized before
calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called
immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in
must also be initialized, and then if strm->avail_in is not zero, input will must also be initialized, and then if strm->avail_in is not zero, input will
skipping to change at line 1087 skipping to change at line 1154
On return, inflateBack() will set strm->next_in and strm->avail_in to On return, inflateBack() will set strm->next_in and strm->avail_in to
pass back any unused input that was provided by the last in() call. The pass back any unused input that was provided by the last in() call. The
return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR
if in() or out() returned an error, Z_DATA_ERROR if there was a format error if in() or out() returned an error, Z_DATA_ERROR if there was a format error
in the deflate stream (in which case strm->msg is set to indicate the nature in the deflate stream (in which case strm->msg is set to indicate the nature
of the error), or Z_STREAM_ERROR if the stream was not properly initialized. of the error), or Z_STREAM_ERROR if the stream was not properly initialized.
In the case of Z_BUF_ERROR, an input or output error can be distinguished In the case of Z_BUF_ERROR, an input or output error can be distinguished
using strm->next_in which will be Z_NULL only if in() returned an error. If using strm->next_in which will be Z_NULL only if in() returned an error. If
strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning
non-zero. (in() will always be called before out(), so strm->next_in is non-zero. (in() will always be called before out(), so strm->next_in is
assured to be defined if out() returns non-zero.) Note that inflateBack() assured to be defined if out() returns non-zero.) Note that inflateBack()
cannot return Z_OK. cannot return Z_OK.
*/ */
ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm)); ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
/* /*
All memory allocated by inflateBackInit() is freed. All memory allocated by inflateBackInit() is freed.
inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream
state was inconsistent. state was inconsistent.
*/ */
skipping to change at line 1109 skipping to change at line 1176
ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void)); ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
/* Return flags indicating compile-time options. /* Return flags indicating compile-time options.
Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other: Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other:
1.0: size of uInt 1.0: size of uInt
3.2: size of uLong 3.2: size of uLong
5.4: size of voidpf (pointer) 5.4: size of voidpf (pointer)
7.6: size of z_off_t 7.6: size of z_off_t
Compiler, assembler, and debug options: Compiler, assembler, and debug options:
8: DEBUG 8: ZLIB_DEBUG
9: ASMV or ASMINF -- use ASM code 9: ASMV or ASMINF -- use ASM code
10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention 10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention
11: 0 (reserved) 11: 0 (reserved)
One-time table building (smaller code, but not thread-safe if true): One-time table building (smaller code, but not thread-safe if true):
12: BUILDFIXED -- build static block decoding tables when needed 12: BUILDFIXED -- build static block decoding tables when needed
13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed 13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed
14,15: 0 (reserved) 14,15: 0 (reserved)
Library content (indicates missing functionality): Library content (indicates missing functionality):
skipping to change at line 1159 skipping to change at line 1226
you need special options. you need special options.
*/ */
ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen, ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen)); const Bytef *source, uLong sourceLen));
/* /*
Compresses the source buffer into the destination buffer. sourceLen is Compresses the source buffer into the destination buffer. sourceLen is
the byte length of the source buffer. Upon entry, destLen is the total size the byte length of the source buffer. Upon entry, destLen is the total size
of the destination buffer, which must be at least the value returned by of the destination buffer, which must be at least the value returned by
compressBound(sourceLen). Upon exit, destLen is the actual size of the compressBound(sourceLen). Upon exit, destLen is the actual size of the
compressed buffer. compressed data. compress() is equivalent to compress2() with a level
parameter of Z_DEFAULT_COMPRESSION.
compress returns Z_OK if success, Z_MEM_ERROR if there was not compress returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_BUF_ERROR if there was not enough room in the output enough memory, Z_BUF_ERROR if there was not enough room in the output
buffer. buffer.
*/ */
ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen, ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen, const Bytef *source, uLong sourceLen,
int level)); int level));
/* /*
Compresses the source buffer into the destination buffer. The level Compresses the source buffer into the destination buffer. The level
parameter has the same meaning as in deflateInit. sourceLen is the byte parameter has the same meaning as in deflateInit. sourceLen is the byte
length of the source buffer. Upon entry, destLen is the total size of the length of the source buffer. Upon entry, destLen is the total size of the
destination buffer, which must be at least the value returned by destination buffer, which must be at least the value returned by
compressBound(sourceLen). Upon exit, destLen is the actual size of the compressBound(sourceLen). Upon exit, destLen is the actual size of the
compressed buffer. compressed data.
compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_BUF_ERROR if there was not enough room in the output buffer, memory, Z_BUF_ERROR if there was not enough room in the output buffer,
Z_STREAM_ERROR if the level parameter is invalid. Z_STREAM_ERROR if the level parameter is invalid.
*/ */
ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen)); ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen));
/* /*
compressBound() returns an upper bound on the compressed size after compressBound() returns an upper bound on the compressed size after
compress() or compress2() on sourceLen bytes. It would be used before a compress() or compress2() on sourceLen bytes. It would be used before a
skipping to change at line 1198 skipping to change at line 1266
ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen, ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen)); const Bytef *source, uLong sourceLen));
/* /*
Decompresses the source buffer into the destination buffer. sourceLen is Decompresses the source buffer into the destination buffer. sourceLen is
the byte length of the source buffer. Upon entry, destLen is the total size the byte length of the source buffer. Upon entry, destLen is the total size
of the destination buffer, which must be large enough to hold the entire of the destination buffer, which must be large enough to hold the entire
uncompressed data. (The size of the uncompressed data must have been saved uncompressed data. (The size of the uncompressed data must have been saved
previously by the compressor and transmitted to the decompressor by some previously by the compressor and transmitted to the decompressor by some
mechanism outside the scope of this compression library.) Upon exit, destLen mechanism outside the scope of this compression library.) Upon exit, destLen
is the actual size of the uncompressed buffer. is the actual size of the uncompressed data.
uncompress returns Z_OK if success, Z_MEM_ERROR if there was not uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_BUF_ERROR if there was not enough room in the output enough memory, Z_BUF_ERROR if there was not enough room in the output
buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In
the case where there is not enough room, uncompress() will fill the output the case where there is not enough room, uncompress() will fill the output
buffer with the uncompressed data up to that point. buffer with the uncompressed data up to that point.
*/ */
ZEXTERN int ZEXPORT uncompress2 OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen));
/*
Same as uncompress, except that sourceLen is a pointer, where the
length of the source is *sourceLen. On return, *sourceLen is the number of
source bytes consumed.
*/
/* gzip file access functions */ /* gzip file access functions */
/* /*
This library supports reading and writing files in gzip (.gz) format with This library supports reading and writing files in gzip (.gz) format with
an interface similar to that of stdio, using the functions that start with an interface similar to that of stdio, using the functions that start with
"gz". The gzip format is different from the zlib format. gzip is a gzip "gz". The gzip format is different from the zlib format. gzip is a gzip
wrapper, documented in RFC 1952, wrapped around a deflate stream. wrapper, documented in RFC 1952, wrapped around a deflate stream.
*/ */
typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */ typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */
skipping to change at line 1285 skipping to change at line 1361
used until the next gz* read, write, seek, or close operation, so gzdopen used until the next gz* read, write, seek, or close operation, so gzdopen
will not detect if fd is invalid (unless fd is -1). will not detect if fd is invalid (unless fd is -1).
*/ */
ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size)); ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size));
/* /*
Set the internal buffer size used by this library's functions. The Set the internal buffer size used by this library's functions. The
default buffer size is 8192 bytes. This function must be called after default buffer size is 8192 bytes. This function must be called after
gzopen() or gzdopen(), and before any other calls that read or write the gzopen() or gzdopen(), and before any other calls that read or write the
file. The buffer memory allocation is always deferred to the first read or file. The buffer memory allocation is always deferred to the first read or
write. Two buffers are allocated, either both of the specified size when write. Three times that size in buffer space is allocated. A larger buffer
writing, or one of the specified size and the other twice that size when size of, for example, 64K or 128K bytes will noticeably increase the speed
reading. A larger buffer size of, for example, 64K or 128K bytes will of decompression (reading).
noticeably increase the speed of decompression (reading).
The new buffer size also affects the maximum length for gzprintf(). The new buffer size also affects the maximum length for gzprintf().
gzbuffer() returns 0 on success, or -1 on failure, such as being called gzbuffer() returns 0 on success, or -1 on failure, such as being called
too late. too late.
*/ */
ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy)); ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
/* /*
Dynamically update the compression level or strategy. See the description Dynamically update the compression level or strategy. See the description
of deflateInit2 for the meaning of these parameters. of deflateInit2 for the meaning of these parameters. Previously provided
data is flushed before the parameter change.
gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not gzsetparams returns Z_OK if success, Z_STREAM_ERROR if the file was not
opened for writing. opened for writing, Z_ERRNO if there is an error writing the flushed data,
or Z_MEM_ERROR if there is a memory allocation error.
*/ */
ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len)); ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
/* /*
Reads the given number of uncompressed bytes from the compressed file. If Reads the given number of uncompressed bytes from the compressed file. If
the input file is not in gzip format, gzread copies the given number of the input file is not in gzip format, gzread copies the given number of
bytes into the buffer directly from the file. bytes into the buffer directly from the file.
After reaching the end of a gzip stream in the input, gzread will continue After reaching the end of a gzip stream in the input, gzread will continue
to read, looking for another gzip stream. Any number of gzip streams may be to read, looking for another gzip stream. Any number of gzip streams may be
skipping to change at line 1330 skipping to change at line 1407
gzclearerr can be used to clear the end of file indicator in order to permit gzclearerr can be used to clear the end of file indicator in order to permit
gzread to be tried again. Z_OK indicates that a gzip stream was completed gzread to be tried again. Z_OK indicates that a gzip stream was completed
on the last gzread. Z_BUF_ERROR indicates that the input file ended in the on the last gzread. Z_BUF_ERROR indicates that the input file ended in the
middle of a gzip stream. Note that gzread does not return -1 in the event middle of a gzip stream. Note that gzread does not return -1 in the event
of an incomplete gzip stream. This error is deferred until gzclose(), which of an incomplete gzip stream. This error is deferred until gzclose(), which
will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip
stream. Alternatively, gzerror can be used before gzclose to detect this stream. Alternatively, gzerror can be used before gzclose to detect this
case. case.
gzread returns the number of uncompressed bytes actually read, less than gzread returns the number of uncompressed bytes actually read, less than
len for end of file, or -1 for error. len for end of file, or -1 for error. If len is too large to fit in an int,
then nothing is read, -1 is returned, and the error state is set to
Z_STREAM_ERROR.
*/
ZEXTERN z_size_t ZEXPORT gzfread OF((voidp buf, z_size_t size, z_size_t nitems,
gzFile file));
/*
Read up to nitems items of size size from file to buf, otherwise operating
as gzread() does. This duplicates the interface of stdio's fread(), with
size_t request and return types. If the library defines size_t, then
z_size_t is identical to size_t. If not, then z_size_t is an unsigned
integer type that can contain a pointer.
gzfread() returns the number of full items read of size size, or zero if
the end of the file was reached and a full item could not be read, or if
there was an error. gzerror() must be consulted if zero is returned in
order to determine if there was an error. If the multiplication of size and
nitems overflows, i.e. the product does not fit in a z_size_t, then nothing
is read, zero is returned, and the error state is set to Z_STREAM_ERROR.
In the event that the end of file is reached and only a partial item is
available at the end, i.e. the remaining uncompressed data length is not a
multiple of size, then the final partial item is nevetheless read into buf
and the end-of-file flag is set. The length of the partial item read is not
provided, but could be inferred from the result of gztell(). This behavior
is the same as the behavior of fread() implementations in common libraries,
but it prevents the direct use of gzfread() to read a concurrently written
file, reseting and retrying on end-of-file, when size is not 1.
*/ */
ZEXTERN int ZEXPORT gzwrite OF((gzFile file, ZEXTERN int ZEXPORT gzwrite OF((gzFile file,
voidpc buf, unsigned len)); voidpc buf, unsigned len));
/* /*
Writes the given number of uncompressed bytes into the compressed file. Writes the given number of uncompressed bytes into the compressed file.
gzwrite returns the number of uncompressed bytes written or 0 in case of gzwrite returns the number of uncompressed bytes written or 0 in case of
error. error.
*/ */
ZEXTERN z_size_t ZEXPORT gzfwrite OF((voidpc buf, z_size_t size,
z_size_t nitems, gzFile file));
/*
gzfwrite() writes nitems items of size size from buf to file, duplicating
the interface of stdio's fwrite(), with size_t request and return types. If
the library defines size_t, then z_size_t is identical to size_t. If not,
then z_size_t is an unsigned integer type that can contain a pointer.
gzfwrite() returns the number of full items written of size size, or zero
if there was an error. If the multiplication of size and nitems overflows,
i.e. the product does not fit in a z_size_t, then nothing is written, zero
is returned, and the error state is set to Z_STREAM_ERROR.
*/
ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...)); ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...));
/* /*
Converts, formats, and writes the arguments to the compressed file under Converts, formats, and writes the arguments to the compressed file under
control of the format string, as in fprintf. gzprintf returns the number of control of the format string, as in fprintf. gzprintf returns the number of
uncompressed bytes actually written, or 0 in case of error. The number of uncompressed bytes actually written, or a negative zlib error code in case
uncompressed bytes written is limited to 8191, or one less than the buffer of error. The number of uncompressed bytes written is limited to 8191, or
size given to gzbuffer(). The caller should assure that this limit is not one less than the buffer size given to gzbuffer(). The caller should assure
exceeded. If it is exceeded, then gzprintf() will return an error (0) with that this limit is not exceeded. If it is exceeded, then gzprintf() will
nothing written. In this case, there may also be a buffer overflow with return an error (0) with nothing written. In this case, there may also be a
unpredictable consequences, which is possible only if zlib was compiled with buffer overflow with unpredictable consequences, which is possible only if
the insecure functions sprintf() or vsprintf() because the secure snprintf() zlib was compiled with the insecure functions sprintf() or vsprintf()
or vsnprintf() functions were not available. This can be determined using because the secure snprintf() or vsnprintf() functions were not available.
zlibCompileFlags(). This can be determined using zlibCompileFlags().
*/ */
ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s)); ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
/* /*
Writes the given null-terminated string to the compressed file, excluding Writes the given null-terminated string to the compressed file, excluding
the terminating null character. the terminating null character.
gzputs returns the number of characters written, or -1 in case of error. gzputs returns the number of characters written, or -1 in case of error.
*/ */
skipping to change at line 1413 skipping to change at line 1532
ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush)); ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
/* /*
Flushes all pending output into the compressed file. The parameter flush Flushes all pending output into the compressed file. The parameter flush
is as in the deflate() function. The return value is the zlib error number is as in the deflate() function. The return value is the zlib error number
(see function gzerror below). gzflush is only permitted when writing. (see function gzerror below). gzflush is only permitted when writing.
If the flush parameter is Z_FINISH, the remaining data is written and the If the flush parameter is Z_FINISH, the remaining data is written and the
gzip stream is completed in the output. If gzwrite() is called again, a new gzip stream is completed in the output. If gzwrite() is called again, a new
gzip stream will be started in the output. gzread() is able to read such gzip stream will be started in the output. gzread() is able to read such
concatented gzip streams. concatenated gzip streams.
gzflush should be called only when strictly necessary because it will gzflush should be called only when strictly necessary because it will
degrade compression if called too often. degrade compression if called too often.
*/ */
/* /*
ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file, ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
z_off_t offset, int whence)); z_off_t offset, int whence));
Sets the starting position for the next gzread or gzwrite on the given Sets the starting position for the next gzread or gzwrite on the given
skipping to change at line 1567 skipping to change at line 1686
anyway because they might be useful in applications using the compression anyway because they might be useful in applications using the compression
library. library.
*/ */
ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len)); ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
/* /*
Update a running Adler-32 checksum with the bytes buf[0..len-1] and Update a running Adler-32 checksum with the bytes buf[0..len-1] and
return the updated checksum. If buf is Z_NULL, this function returns the return the updated checksum. If buf is Z_NULL, this function returns the
required initial value for the checksum. required initial value for the checksum.
An Adler-32 checksum is almost as reliable as a CRC32 but can be computed An Adler-32 checksum is almost as reliable as a CRC-32 but can be computed
much faster. much faster.
Usage example: Usage example:
uLong adler = adler32(0L, Z_NULL, 0); uLong adler = adler32(0L, Z_NULL, 0);
while (read_buffer(buffer, length) != EOF) { while (read_buffer(buffer, length) != EOF) {
adler = adler32(adler, buffer, length); adler = adler32(adler, buffer, length);
} }
if (adler != original_adler) error(); if (adler != original_adler) error();
*/ */
ZEXTERN uLong ZEXPORT adler32_z OF((uLong adler, const Bytef *buf,
z_size_t len));
/*
Same as adler32(), but with a size_t length.
*/
/* /*
ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2, ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2,
z_off_t len2)); z_off_t len2));
Combine two Adler-32 checksums into one. For two sequences of bytes, seq1 Combine two Adler-32 checksums into one. For two sequences of bytes, seq1
and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of
seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note
that the z_off_t type (like off_t) is a signed integer. If len2 is that the z_off_t type (like off_t) is a signed integer. If len2 is
negative, the result has no meaning or utility. negative, the result has no meaning or utility.
skipping to change at line 1609 skipping to change at line 1734
Usage example: Usage example:
uLong crc = crc32(0L, Z_NULL, 0); uLong crc = crc32(0L, Z_NULL, 0);
while (read_buffer(buffer, length) != EOF) { while (read_buffer(buffer, length) != EOF) {
crc = crc32(crc, buffer, length); crc = crc32(crc, buffer, length);
} }
if (crc != original_crc) error(); if (crc != original_crc) error();
*/ */
ZEXTERN uLong ZEXPORT crc32_z OF((uLong adler, const Bytef *buf,
z_size_t len));
/*
Same as crc32(), but with a size_t length.
*/
/* /*
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2));
Combine two CRC-32 check values into one. For two sequences of bytes, Combine two CRC-32 check values into one. For two sequences of bytes,
seq1 and seq2 with lengths len1 and len2, CRC-32 check values were seq1 and seq2 with lengths len1 and len2, CRC-32 check values were
calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32 calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32
check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and
len2. len2.
*/ */
skipping to change at line 1638 skipping to change at line 1769
ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method, ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method,
int windowBits, int memLevel, int windowBits, int memLevel,
int strategy, const char *version, int strategy, const char *version,
int stream_size)); int stream_size));
ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits, ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits,
const char *version, int stream_size)); const char *version, int stream_size));
ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits, ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits,
unsigned char FAR *window, unsigned char FAR *window,
const char *version, const char *version,
int stream_size)); int stream_size));
#define deflateInit(strm, level) \ #ifdef Z_PREFIX_SET
deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream)) # define z_deflateInit(strm, level) \
#define inflateInit(strm) \ deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream))
inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream)) # define z_inflateInit(strm) \
#define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \ inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream))
deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\ # define z_deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
(strategy), ZLIB_VERSION, (int)sizeof(z_stream)) deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
#define inflateInit2(strm, windowBits) \ (strategy), ZLIB_VERSION, (int)sizeof(z_stream))
inflateInit2_((strm), (windowBits), ZLIB_VERSION, \ # define z_inflateInit2(strm, windowBits) \
(int)sizeof(z_stream)) inflateInit2_((strm), (windowBits), ZLIB_VERSION, \
#define inflateBackInit(strm, windowBits, window) \ (int)sizeof(z_stream))
inflateBackInit_((strm), (windowBits), (window), \ # define z_inflateBackInit(strm, windowBits, window) \
ZLIB_VERSION, (int)sizeof(z_stream)) inflateBackInit_((strm), (windowBits), (window), \
ZLIB_VERSION, (int)sizeof(z_stream))
#else
# define deflateInit(strm, level) \
deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream))
# define inflateInit(strm) \
inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream))
# define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
(strategy), ZLIB_VERSION, (int)sizeof(z_stream))
# define inflateInit2(strm, windowBits) \
inflateInit2_((strm), (windowBits), ZLIB_VERSION, \
(int)sizeof(z_stream))
# define inflateBackInit(strm, windowBits, window) \
inflateBackInit_((strm), (windowBits), (window), \
ZLIB_VERSION, (int)sizeof(z_stream))
#endif
#ifndef Z_SOLO #ifndef Z_SOLO
/* gzgetc() macro and its supporting function and exposed data structure. Note /* gzgetc() macro and its supporting function and exposed data structure. Note
* that the real internal state is much larger than the exposed structure. * that the real internal state is much larger than the exposed structure.
* This abbreviated structure exposes just enough for the gzgetc() macro. The * This abbreviated structure exposes just enough for the gzgetc() macro. The
* user should not mess with these exposed elements, since their names or * user should not mess with these exposed elements, since their names or
* behavior could change in the future, perhaps even capriciously. They can * behavior could change in the future, perhaps even capriciously. They can
* only be used by the gzgetc() macro. You have been warned. * only be used by the gzgetc() macro. You have been warned.
*/ */
struct gzFile_s { struct gzFile_s {
unsigned have; unsigned have;
unsigned char *next; unsigned char *next;
z_off64_t pos; z_off64_t pos;
}; };
ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */ ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */
#ifdef Z_PREFIX_SET #ifdef Z_PREFIX_SET
# undef z_gzgetc # undef z_gzgetc
# define z_gzgetc(g) \ # define z_gzgetc(g) \
((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : (gzgetc)(g))
#else #else
# define gzgetc(g) \ # define gzgetc(g) \
((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : (gzgetc)(g))
#endif #endif
/* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or /* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or
* change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if
* both are true, the application gets the *64 functions, and the regular * both are true, the application gets the *64 functions, and the regular
* functions are changed to 64 bits) -- in case these are set on systems * functions are changed to 64 bits) -- in case these are set on systems
* without large file support, _LFS64_LARGEFILE must also be true * without large file support, _LFS64_LARGEFILE must also be true
*/ */
#ifdef Z_LARGE64 #ifdef Z_LARGE64
ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
skipping to change at line 1731 skipping to change at line 1878
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
#endif #endif
#else /* Z_SOLO */ #else /* Z_SOLO */
ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
#endif /* !Z_SOLO */ #endif /* !Z_SOLO */
/* hack for buggy compilers */
#if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL)
struct internal_state {int dummy;};
#endif
/* undocumented functions */ /* undocumented functions */
ZEXTERN const char * ZEXPORT zError OF((int)); ZEXTERN const char * ZEXPORT zError OF((int));
ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp)); ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp));
ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void)); ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void));
ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int)); ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int));
ZEXTERN int ZEXPORT inflateValidate OF((z_streamp, int));
ZEXTERN unsigned long ZEXPORT inflateCodesUsed OF ((z_streamp));
ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp)); ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp));
ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp)); ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp));
#if defined(_WIN32) && !defined(Z_SOLO) #if (defined(_WIN32) || defined(__CYGWIN__)) && !defined(Z_SOLO)
ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path, ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path,
const char *mode)); const char *mode));
#endif #endif
#if defined(STDC) || defined(Z_HAVE_STDARG_H) #if defined(STDC) || defined(Z_HAVE_STDARG_H)
# ifndef Z_SOLO # ifndef Z_SOLO
ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file, ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file,
const char *format, const char *format,
va_list va)); va_list va));
# endif # endif
#endif #endif
 End of changes. 72 change blocks. 
154 lines changed or deleted 298 lines changed or added

Home  |  About  |  Features  |  All  |  Newest  |  Dox  |  Diffs  |  RSS Feeds  |  Screenshots  |  Comments  |  Imprint  |  Privacy  |  HTTP(S)