gmock-actions.h (googletest-release-1.11.0) | : | gmock-actions.h (googletest-release-1.12.0) | ||
---|---|---|---|---|
skipping to change at line 127 | skipping to change at line 127 | |||
// ACTION*() can only be used in a namespace scope as templates cannot be | // ACTION*() can only be used in a namespace scope as templates cannot be | |||
// declared inside of a local class. | // declared inside of a local class. | |||
// Users can, however, define any local functors (e.g. a lambda) that | // Users can, however, define any local functors (e.g. a lambda) that | |||
// can be used as actions. | // can be used as actions. | |||
// | // | |||
// MORE INFORMATION: | // MORE INFORMATION: | |||
// | // | |||
// To learn more about using these macros, please search for 'ACTION' on | // To learn more about using these macros, please search for 'ACTION' on | |||
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md | // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md | |||
// GOOGLETEST_CM0002 DO NOT DELETE | // IWYU pragma: private, include "gmock/gmock.h" | |||
// IWYU pragma: friend gmock/.* | ||||
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | |||
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | |||
#ifndef _WIN32_WCE | #ifndef _WIN32_WCE | |||
# include <errno.h> | #include <errno.h> | |||
#endif | #endif | |||
#include <algorithm> | #include <algorithm> | |||
#include <functional> | #include <functional> | |||
#include <memory> | #include <memory> | |||
#include <string> | #include <string> | |||
#include <tuple> | #include <tuple> | |||
#include <type_traits> | #include <type_traits> | |||
#include <utility> | #include <utility> | |||
#include "gmock/internal/gmock-internal-utils.h" | #include "gmock/internal/gmock-internal-utils.h" | |||
#include "gmock/internal/gmock-port.h" | #include "gmock/internal/gmock-port.h" | |||
#include "gmock/internal/gmock-pp.h" | #include "gmock/internal/gmock-pp.h" | |||
#ifdef _MSC_VER | #ifdef _MSC_VER | |||
# pragma warning(push) | #pragma warning(push) | |||
# pragma warning(disable:4100) | #pragma warning(disable : 4100) | |||
#endif | #endif | |||
namespace testing { | namespace testing { | |||
// To implement an action Foo, define: | // To implement an action Foo, define: | |||
// 1. a class FooAction that implements the ActionInterface interface, and | // 1. a class FooAction that implements the ActionInterface interface, and | |||
// 2. a factory function that creates an Action object from a | // 2. a factory function that creates an Action object from a | |||
// const FooAction*. | // const FooAction*. | |||
// | // | |||
// The two-level delegation design follows that of Matcher, providing | // The two-level delegation design follows that of Matcher, providing | |||
skipping to change at line 198 | skipping to change at line 199 | |||
// a numeric type, false when T is bool, or "" when T is string or | // a numeric type, false when T is bool, or "" when T is string or | |||
// std::string. In addition, in C++11 and above, it turns a | // std::string. In addition, in C++11 and above, it turns a | |||
// default-constructed T value if T is default constructible. For any | // default-constructed T value if T is default constructible. For any | |||
// other type T, the built-in default T value is undefined, and the | // other type T, the built-in default T value is undefined, and the | |||
// function will abort the process. | // function will abort the process. | |||
template <typename T> | template <typename T> | |||
class BuiltInDefaultValue { | class BuiltInDefaultValue { | |||
public: | public: | |||
// This function returns true if and only if type T has a built-in default | // This function returns true if and only if type T has a built-in default | |||
// value. | // value. | |||
static bool Exists() { | static bool Exists() { return ::std::is_default_constructible<T>::value; } | |||
return ::std::is_default_constructible<T>::value; | ||||
} | ||||
static T Get() { | static T Get() { | |||
return BuiltInDefaultValueGetter< | return BuiltInDefaultValueGetter< | |||
T, ::std::is_default_constructible<T>::value>::Get(); | T, ::std::is_default_constructible<T>::value>::Get(); | |||
} | } | |||
}; | }; | |||
// This partial specialization says that we use the same built-in | // This partial specialization says that we use the same built-in | |||
// default value for T and const T. | // default value for T and const T. | |||
template <typename T> | template <typename T> | |||
skipping to change at line 229 | skipping to change at line 228 | |||
template <typename T> | template <typename T> | |||
class BuiltInDefaultValue<T*> { | class BuiltInDefaultValue<T*> { | |||
public: | public: | |||
static bool Exists() { return true; } | static bool Exists() { return true; } | |||
static T* Get() { return nullptr; } | static T* Get() { return nullptr; } | |||
}; | }; | |||
// The following specializations define the default values for | // The following specializations define the default values for | |||
// specific types we care about. | // specific types we care about. | |||
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ | #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ | |||
template <> \ | template <> \ | |||
class BuiltInDefaultValue<type> { \ | class BuiltInDefaultValue<type> { \ | |||
public: \ | public: \ | |||
static bool Exists() { return true; } \ | static bool Exists() { return true; } \ | |||
static type Get() { return value; } \ | static type Get() { return value; } \ | |||
} | } | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); | |||
// There's no need for a default action for signed wchar_t, as that | // There's no need for a default action for signed wchar_t, as that | |||
skipping to change at line 257 | skipping to change at line 256 | |||
// that type is the same as unsigned int for gcc, and invalid for | // that type is the same as unsigned int for gcc, and invalid for | |||
// MSVC. | // MSVC. | |||
#if GMOCK_WCHAR_T_IS_NATIVE_ | #if GMOCK_WCHAR_T_IS_NATIVE_ | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT | |||
#endif | #endif | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); | |||
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); | |||
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ | #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ | |||
// Simple two-arg form of std::disjunction. | // Partial implementations of metaprogramming types from the standard library | |||
template <typename P, typename Q> | // not available in C++11. | |||
using disjunction = typename ::std::conditional<P::value, P, Q>::type; | ||||
template <typename P> | ||||
struct negation | ||||
// NOLINTNEXTLINE | ||||
: std::integral_constant<bool, bool(!P::value)> {}; | ||||
// Base case: with zero predicates the answer is always true. | ||||
template <typename...> | ||||
struct conjunction : std::true_type {}; | ||||
// With a single predicate, the answer is that predicate. | ||||
template <typename P1> | ||||
struct conjunction<P1> : P1 {}; | ||||
// With multiple predicates the answer is the first predicate if that is false, | ||||
// and we recurse otherwise. | ||||
template <typename P1, typename... Ps> | ||||
struct conjunction<P1, Ps...> | ||||
: std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {}; | ||||
template <typename...> | ||||
struct disjunction : std::false_type {}; | ||||
template <typename P1> | ||||
struct disjunction<P1> : P1 {}; | ||||
template <typename P1, typename... Ps> | ||||
struct disjunction<P1, Ps...> | ||||
// NOLINTNEXTLINE | ||||
: std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {}; | ||||
template <typename...> | ||||
using void_t = void; | ||||
// Detects whether an expression of type `From` can be implicitly converted to | ||||
// `To` according to [conv]. In C++17, [conv]/3 defines this as follows: | ||||
// | ||||
// An expression e can be implicitly converted to a type T if and only if | ||||
// the declaration T t=e; is well-formed, for some invented temporary | ||||
// variable t ([dcl.init]). | ||||
// | ||||
// [conv]/2 implies we can use function argument passing to detect whether this | ||||
// initialization is valid. | ||||
// | ||||
// Note that this is distinct from is_convertible, which requires this be valid: | ||||
// | ||||
// To test() { | ||||
// return declval<From>(); | ||||
// } | ||||
// | ||||
// In particular, is_convertible doesn't give the correct answer when `To` and | ||||
// `From` are the same non-moveable type since `declval<From>` will be an rvalue | ||||
// reference, defeating the guaranteed copy elision that would otherwise make | ||||
// this function work. | ||||
// | ||||
// REQUIRES: `From` is not cv void. | ||||
template <typename From, typename To> | ||||
struct is_implicitly_convertible { | ||||
private: | ||||
// A function that accepts a parameter of type T. This can be called with type | ||||
// U successfully only if U is implicitly convertible to T. | ||||
template <typename T> | ||||
static void Accept(T); | ||||
// A function that creates a value of type T. | ||||
template <typename T> | ||||
static T Make(); | ||||
// An overload be selected when implicit conversion from T to To is possible. | ||||
template <typename T, typename = decltype(Accept<To>(Make<T>()))> | ||||
static std::true_type TestImplicitConversion(int); | ||||
// A fallback overload selected in all other cases. | ||||
template <typename T> | ||||
static std::false_type TestImplicitConversion(...); | ||||
public: | ||||
using type = decltype(TestImplicitConversion<From>(0)); | ||||
static constexpr bool value = type::value; | ||||
}; | ||||
// Like std::invoke_result_t from C++17, but works only for objects with call | ||||
// operators (not e.g. member function pointers, which we don't need specific | ||||
// support for in OnceAction because std::function deals with them). | ||||
template <typename F, typename... Args> | ||||
using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...)); | ||||
template <typename Void, typename R, typename F, typename... Args> | ||||
struct is_callable_r_impl : std::false_type {}; | ||||
// Specialize the struct for those template arguments where call_result_t is | ||||
// well-formed. When it's not, the generic template above is chosen, resulting | ||||
// in std::false_type. | ||||
template <typename R, typename F, typename... Args> | ||||
struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...> | ||||
: std::conditional< | ||||
std::is_void<R>::value, // | ||||
std::true_type, // | ||||
is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {}; | ||||
// Like std::is_invocable_r from C++17, but works only for objects with call | ||||
// operators. See the note on call_result_t. | ||||
template <typename R, typename F, typename... Args> | ||||
using is_callable_r = is_callable_r_impl<void, R, F, Args...>; | ||||
// Like std::as_const from C++17. | ||||
template <typename T> | ||||
typename std::add_const<T>::type& as_const(T& t) { | ||||
return t; | ||||
} | ||||
} // namespace internal | } // namespace internal | |||
// Specialized for function types below. | ||||
template <typename F> | ||||
class OnceAction; | ||||
// An action that can only be used once. | ||||
// | ||||
// This is accepted by WillOnce, which doesn't require the underlying action to | ||||
// be copy-constructible (only move-constructible), and promises to invoke it as | ||||
// an rvalue reference. This allows the action to work with move-only types like | ||||
// std::move_only_function in a type-safe manner. | ||||
// | ||||
// For example: | ||||
// | ||||
// // Assume we have some API that needs to accept a unique pointer to some | ||||
// // non-copyable object Foo. | ||||
// void AcceptUniquePointer(std::unique_ptr<Foo> foo); | ||||
// | ||||
// // We can define an action that provides a Foo to that API. Because It | ||||
// // has to give away its unique pointer, it must not be called more than | ||||
// // once, so its call operator is &&-qualified. | ||||
// struct ProvideFoo { | ||||
// std::unique_ptr<Foo> foo; | ||||
// | ||||
// void operator()() && { | ||||
// AcceptUniquePointer(std::move(Foo)); | ||||
// } | ||||
// }; | ||||
// | ||||
// // This action can be used with WillOnce. | ||||
// EXPECT_CALL(mock, Call) | ||||
// .WillOnce(ProvideFoo{std::make_unique<Foo>(...)}); | ||||
// | ||||
// // But a call to WillRepeatedly will fail to compile. This is correct, | ||||
// // since the action cannot correctly be used repeatedly. | ||||
// EXPECT_CALL(mock, Call) | ||||
// .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)}); | ||||
// | ||||
// A less-contrived example would be an action that returns an arbitrary type, | ||||
// whose &&-qualified call operator is capable of dealing with move-only types. | ||||
template <typename Result, typename... Args> | ||||
class OnceAction<Result(Args...)> final { | ||||
private: | ||||
// True iff we can use the given callable type (or lvalue reference) directly | ||||
// via StdFunctionAdaptor. | ||||
template <typename Callable> | ||||
using IsDirectlyCompatible = internal::conjunction< | ||||
// It must be possible to capture the callable in StdFunctionAdaptor. | ||||
std::is_constructible<typename std::decay<Callable>::type, Callable>, | ||||
// The callable must be compatible with our signature. | ||||
internal::is_callable_r<Result, typename std::decay<Callable>::type, | ||||
Args...>>; | ||||
// True iff we can use the given callable type via StdFunctionAdaptor once we | ||||
// ignore incoming arguments. | ||||
template <typename Callable> | ||||
using IsCompatibleAfterIgnoringArguments = internal::conjunction< | ||||
// It must be possible to capture the callable in a lambda. | ||||
std::is_constructible<typename std::decay<Callable>::type, Callable>, | ||||
// The callable must be invocable with zero arguments, returning something | ||||
// convertible to Result. | ||||
internal::is_callable_r<Result, typename std::decay<Callable>::type>>; | ||||
public: | ||||
// Construct from a callable that is directly compatible with our mocked | ||||
// signature: it accepts our function type's arguments and returns something | ||||
// convertible to our result type. | ||||
template <typename Callable, | ||||
typename std::enable_if< | ||||
internal::conjunction< | ||||
// Teach clang on macOS that we're not talking about a | ||||
// copy/move constructor here. Otherwise it gets confused | ||||
// when checking the is_constructible requirement of our | ||||
// traits above. | ||||
internal::negation<std::is_same< | ||||
OnceAction, typename std::decay<Callable>::type>>, | ||||
IsDirectlyCompatible<Callable>> // | ||||
::value, | ||||
int>::type = 0> | ||||
OnceAction(Callable&& callable) // NOLINT | ||||
: function_(StdFunctionAdaptor<typename std::decay<Callable>::type>( | ||||
{}, std::forward<Callable>(callable))) {} | ||||
// As above, but for a callable that ignores the mocked function's arguments. | ||||
template <typename Callable, | ||||
typename std::enable_if< | ||||
internal::conjunction< | ||||
// Teach clang on macOS that we're not talking about a | ||||
// copy/move constructor here. Otherwise it gets confused | ||||
// when checking the is_constructible requirement of our | ||||
// traits above. | ||||
internal::negation<std::is_same< | ||||
OnceAction, typename std::decay<Callable>::type>>, | ||||
// Exclude callables for which the overload above works. | ||||
// We'd rather provide the arguments if possible. | ||||
internal::negation<IsDirectlyCompatible<Callable>>, | ||||
IsCompatibleAfterIgnoringArguments<Callable>>::value, | ||||
int>::type = 0> | ||||
OnceAction(Callable&& callable) // NOLINT | ||||
// Call the constructor above with a callable | ||||
// that ignores the input arguments. | ||||
: OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{ | ||||
std::forward<Callable>(callable)}) {} | ||||
// We are naturally copyable because we store only an std::function, but | ||||
// semantically we should not be copyable. | ||||
OnceAction(const OnceAction&) = delete; | ||||
OnceAction& operator=(const OnceAction&) = delete; | ||||
OnceAction(OnceAction&&) = default; | ||||
// Invoke the underlying action callable with which we were constructed, | ||||
// handing it the supplied arguments. | ||||
Result Call(Args... args) && { | ||||
return function_(std::forward<Args>(args)...); | ||||
} | ||||
private: | ||||
// An adaptor that wraps a callable that is compatible with our signature and | ||||
// being invoked as an rvalue reference so that it can be used as an | ||||
// StdFunctionAdaptor. This throws away type safety, but that's fine because | ||||
// this is only used by WillOnce, which we know calls at most once. | ||||
// | ||||
// Once we have something like std::move_only_function from C++23, we can do | ||||
// away with this. | ||||
template <typename Callable> | ||||
class StdFunctionAdaptor final { | ||||
public: | ||||
// A tag indicating that the (otherwise universal) constructor is accepting | ||||
// the callable itself, instead of e.g. stealing calls for the move | ||||
// constructor. | ||||
struct CallableTag final {}; | ||||
template <typename F> | ||||
explicit StdFunctionAdaptor(CallableTag, F&& callable) | ||||
: callable_(std::make_shared<Callable>(std::forward<F>(callable))) {} | ||||
// Rather than explicitly returning Result, we return whatever the wrapped | ||||
// callable returns. This allows for compatibility with existing uses like | ||||
// the following, when the mocked function returns void: | ||||
// | ||||
// EXPECT_CALL(mock_fn_, Call) | ||||
// .WillOnce([&] { | ||||
// [...] | ||||
// return 0; | ||||
// }); | ||||
// | ||||
// Such a callable can be turned into std::function<void()>. If we use an | ||||
// explicit return type of Result here then it *doesn't* work with | ||||
// std::function, because we'll get a "void function should not return a | ||||
// value" error. | ||||
// | ||||
// We need not worry about incompatible result types because the SFINAE on | ||||
// OnceAction already checks this for us. std::is_invocable_r_v itself makes | ||||
// the same allowance for void result types. | ||||
template <typename... ArgRefs> | ||||
internal::call_result_t<Callable, ArgRefs...> operator()( | ||||
ArgRefs&&... args) const { | ||||
return std::move(*callable_)(std::forward<ArgRefs>(args)...); | ||||
} | ||||
private: | ||||
// We must put the callable on the heap so that we are copyable, which | ||||
// std::function needs. | ||||
std::shared_ptr<Callable> callable_; | ||||
}; | ||||
// An adaptor that makes a callable that accepts zero arguments callable with | ||||
// our mocked arguments. | ||||
template <typename Callable> | ||||
struct IgnoreIncomingArguments { | ||||
internal::call_result_t<Callable> operator()(Args&&...) { | ||||
return std::move(callable)(); | ||||
} | ||||
Callable callable; | ||||
}; | ||||
std::function<Result(Args...)> function_; | ||||
}; | ||||
// When an unexpected function call is encountered, Google Mock will | // When an unexpected function call is encountered, Google Mock will | |||
// let it return a default value if the user has specified one for its | // let it return a default value if the user has specified one for its | |||
// return type, or if the return type has a built-in default value; | // return type, or if the return type has a built-in default value; | |||
// otherwise Google Mock won't know what value to return and will have | // otherwise Google Mock won't know what value to return and will have | |||
// to abort the process. | // to abort the process. | |||
// | // | |||
// The DefaultValue<T> class allows a user to specify the | // The DefaultValue<T> class allows a user to specify the | |||
// default value for a type T that is both copyable and publicly | // default value for a type T that is both copyable and publicly | |||
// destructible (i.e. anything that can be used as a function return | // destructible (i.e. anything that can be used as a function return | |||
// type). The usage is: | // type). The usage is: | |||
skipping to change at line 341 | skipping to change at line 628 | |||
virtual T Produce() = 0; | virtual T Produce() = 0; | |||
}; | }; | |||
class FixedValueProducer : public ValueProducer { | class FixedValueProducer : public ValueProducer { | |||
public: | public: | |||
explicit FixedValueProducer(T value) : value_(value) {} | explicit FixedValueProducer(T value) : value_(value) {} | |||
T Produce() override { return value_; } | T Produce() override { return value_; } | |||
private: | private: | |||
const T value_; | const T value_; | |||
GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); | FixedValueProducer(const FixedValueProducer&) = delete; | |||
FixedValueProducer& operator=(const FixedValueProducer&) = delete; | ||||
}; | }; | |||
class FactoryValueProducer : public ValueProducer { | class FactoryValueProducer : public ValueProducer { | |||
public: | public: | |||
explicit FactoryValueProducer(FactoryFunction factory) | explicit FactoryValueProducer(FactoryFunction factory) | |||
: factory_(factory) {} | : factory_(factory) {} | |||
T Produce() override { return factory_(); } | T Produce() override { return factory_(); } | |||
private: | private: | |||
const FactoryFunction factory_; | const FactoryFunction factory_; | |||
GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); | FactoryValueProducer(const FactoryValueProducer&) = delete; | |||
FactoryValueProducer& operator=(const FactoryValueProducer&) = delete; | ||||
}; | }; | |||
static ValueProducer* producer_; | static ValueProducer* producer_; | |||
}; | }; | |||
// This partial specialization allows a user to set default values for | // This partial specialization allows a user to set default values for | |||
// reference types. | // reference types. | |||
template <typename T> | template <typename T> | |||
class DefaultValue<T&> { | class DefaultValue<T&> { | |||
public: | public: | |||
skipping to change at line 426 | skipping to change at line 715 | |||
ActionInterface() {} | ActionInterface() {} | |||
virtual ~ActionInterface() {} | virtual ~ActionInterface() {} | |||
// Performs the action. This method is not const, as in general an | // Performs the action. This method is not const, as in general an | |||
// action can have side effects and be stateful. For example, a | // action can have side effects and be stateful. For example, a | |||
// get-the-next-element-from-the-collection action will need to | // get-the-next-element-from-the-collection action will need to | |||
// remember the current element. | // remember the current element. | |||
virtual Result Perform(const ArgumentTuple& args) = 0; | virtual Result Perform(const ArgumentTuple& args) = 0; | |||
private: | private: | |||
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); | ActionInterface(const ActionInterface&) = delete; | |||
ActionInterface& operator=(const ActionInterface&) = delete; | ||||
}; | }; | |||
// An Action<F> is a copyable and IMMUTABLE (except by assignment) | ||||
// object that represents an action to be taken when a mock function | ||||
// of type F is called. The implementation of Action<T> is just a | ||||
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! | ||||
// You can view an object implementing ActionInterface<F> as a | ||||
// concrete action (including its current state), and an Action<F> | ||||
// object as a handle to it. | ||||
template <typename F> | template <typename F> | |||
class Action { | class Action; | |||
// An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment) | ||||
// object that represents an action to be taken when a mock function of type | ||||
// R(Args...) is called. The implementation of Action<T> is just a | ||||
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You | ||||
// can view an object implementing ActionInterface<F> as a concrete action | ||||
// (including its current state), and an Action<F> object as a handle to it. | ||||
template <typename R, typename... Args> | ||||
class Action<R(Args...)> { | ||||
private: | ||||
using F = R(Args...); | ||||
// Adapter class to allow constructing Action from a legacy ActionInterface. | // Adapter class to allow constructing Action from a legacy ActionInterface. | |||
// New code should create Actions from functors instead. | // New code should create Actions from functors instead. | |||
struct ActionAdapter { | struct ActionAdapter { | |||
// Adapter must be copyable to satisfy std::function requirements. | // Adapter must be copyable to satisfy std::function requirements. | |||
::std::shared_ptr<ActionInterface<F>> impl_; | ::std::shared_ptr<ActionInterface<F>> impl_; | |||
template <typename... Args> | template <typename... InArgs> | |||
typename internal::Function<F>::Result operator()(Args&&... args) { | typename internal::Function<F>::Result operator()(InArgs&&... args) { | |||
return impl_->Perform( | return impl_->Perform( | |||
::std::forward_as_tuple(::std::forward<Args>(args)...)); | ::std::forward_as_tuple(::std::forward<InArgs>(args)...)); | |||
} | } | |||
}; | }; | |||
template <typename G> | template <typename G> | |||
using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; | using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; | |||
public: | public: | |||
typedef typename internal::Function<F>::Result Result; | typedef typename internal::Function<F>::Result Result; | |||
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | |||
skipping to change at line 482 | skipping to change at line 777 | |||
} | } | |||
// Constructs an Action from its implementation. | // Constructs an Action from its implementation. | |||
explicit Action(ActionInterface<F>* impl) | explicit Action(ActionInterface<F>* impl) | |||
: fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} | : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} | |||
// This constructor allows us to turn an Action<Func> object into an | // This constructor allows us to turn an Action<Func> object into an | |||
// Action<F>, as long as F's arguments can be implicitly converted | // Action<F>, as long as F's arguments can be implicitly converted | |||
// to Func's and Func's return type can be implicitly converted to F's. | // to Func's and Func's return type can be implicitly converted to F's. | |||
template <typename Func> | template <typename Func> | |||
explicit Action(const Action<Func>& action) : fun_(action.fun_) {} | Action(const Action<Func>& action) // NOLINT | |||
: fun_(action.fun_) {} | ||||
// Returns true if and only if this is the DoDefault() action. | // Returns true if and only if this is the DoDefault() action. | |||
bool IsDoDefault() const { return fun_ == nullptr; } | bool IsDoDefault() const { return fun_ == nullptr; } | |||
// Performs the action. Note that this method is const even though | // Performs the action. Note that this method is const even though | |||
// the corresponding method in ActionInterface is not. The reason | // the corresponding method in ActionInterface is not. The reason | |||
// is that a const Action<F> means that it cannot be re-bound to | // is that a const Action<F> means that it cannot be re-bound to | |||
// another concrete action, not that the concrete action it binds to | // another concrete action, not that the concrete action it binds to | |||
// cannot change state. (Think of the difference between a const | // cannot change state. (Think of the difference between a const | |||
// pointer and a pointer to const.) | // pointer and a pointer to const.) | |||
Result Perform(ArgumentTuple args) const { | Result Perform(ArgumentTuple args) const { | |||
if (IsDoDefault()) { | if (IsDoDefault()) { | |||
internal::IllegalDoDefault(__FILE__, __LINE__); | internal::IllegalDoDefault(__FILE__, __LINE__); | |||
} | } | |||
return internal::Apply(fun_, ::std::move(args)); | return internal::Apply(fun_, ::std::move(args)); | |||
} | } | |||
// An action can be used as a OnceAction, since it's obviously safe to call it | ||||
// once. | ||||
operator OnceAction<F>() const { // NOLINT | ||||
// Return a OnceAction-compatible callable that calls Perform with the | ||||
// arguments it is provided. We could instead just return fun_, but then | ||||
// we'd need to handle the IsDoDefault() case separately. | ||||
struct OA { | ||||
Action<F> action; | ||||
R operator()(Args... args) && { | ||||
return action.Perform( | ||||
std::forward_as_tuple(std::forward<Args>(args)...)); | ||||
} | ||||
}; | ||||
return OA{*this}; | ||||
} | ||||
private: | private: | |||
template <typename G> | template <typename G> | |||
friend class Action; | friend class Action; | |||
template <typename G> | template <typename G> | |||
void Init(G&& g, ::std::true_type) { | void Init(G&& g, ::std::true_type) { | |||
fun_ = ::std::forward<G>(g); | fun_ = ::std::forward<G>(g); | |||
} | } | |||
template <typename G> | template <typename G> | |||
void Init(G&& g, ::std::false_type) { | void Init(G&& g, ::std::false_type) { | |||
fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; | fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; | |||
} | } | |||
template <typename FunctionImpl> | template <typename FunctionImpl> | |||
struct IgnoreArgs { | struct IgnoreArgs { | |||
template <typename... Args> | template <typename... InArgs> | |||
Result operator()(const Args&...) const { | Result operator()(const InArgs&...) const { | |||
return function_impl(); | return function_impl(); | |||
} | } | |||
FunctionImpl function_impl; | FunctionImpl function_impl; | |||
}; | }; | |||
// fun_ is an empty function if and only if this is the DoDefault() action. | // fun_ is an empty function if and only if this is the DoDefault() action. | |||
::std::function<F> fun_; | ::std::function<F> fun_; | |||
}; | }; | |||
skipping to change at line 608 | skipping to change at line 922 | |||
namespace internal { | namespace internal { | |||
// Helper struct to specialize ReturnAction to execute a move instead of a copy | // Helper struct to specialize ReturnAction to execute a move instead of a copy | |||
// on return. Useful for move-only types, but could be used on any type. | // on return. Useful for move-only types, but could be used on any type. | |||
template <typename T> | template <typename T> | |||
struct ByMoveWrapper { | struct ByMoveWrapper { | |||
explicit ByMoveWrapper(T value) : payload(std::move(value)) {} | explicit ByMoveWrapper(T value) : payload(std::move(value)) {} | |||
T payload; | T payload; | |||
}; | }; | |||
// Implements the polymorphic Return(x) action, which can be used in | // The general implementation of Return(R). Specializations follow below. | |||
// any function that returns the type of x, regardless of the argument | ||||
// types. | ||||
// | ||||
// Note: The value passed into Return must be converted into | ||||
// Function<F>::Result when this action is cast to Action<F> rather than | ||||
// when that action is performed. This is important in scenarios like | ||||
// | ||||
// MOCK_METHOD1(Method, T(U)); | ||||
// ... | ||||
// { | ||||
// Foo foo; | ||||
// X x(&foo); | ||||
// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); | ||||
// } | ||||
// | ||||
// In the example above the variable x holds reference to foo which leaves | ||||
// scope and gets destroyed. If copying X just copies a reference to foo, | ||||
// that copy will be left with a hanging reference. If conversion to T | ||||
// makes a copy of foo, the above code is safe. To support that scenario, we | ||||
// need to make sure that the type conversion happens inside the EXPECT_CALL | ||||
// statement, and conversion of the result of Return to Action<T(U)> is a | ||||
// good place for that. | ||||
// | ||||
// The real life example of the above scenario happens when an invocation | ||||
// of gtl::Container() is passed into Return. | ||||
// | ||||
template <typename R> | template <typename R> | |||
class ReturnAction { | class ReturnAction final { | |||
public: | public: | |||
// Constructs a ReturnAction object from the value to be returned. | explicit ReturnAction(R value) : value_(std::move(value)) {} | |||
// 'value' is passed by value instead of by const reference in order | ||||
// to allow Return("string literal") to compile. | ||||
explicit ReturnAction(R value) : value_(new R(std::move(value))) {} | ||||
// This template type conversion operator allows Return(x) to be | template <typename U, typename... Args, | |||
// used in ANY function that returns x's type. | typename = typename std::enable_if<conjunction< | |||
template <typename F> | // See the requirements documented on Return. | |||
operator Action<F>() const { // NOLINT | negation<std::is_same<void, U>>, // | |||
// Assert statement belongs here because this is the best place to verify | negation<std::is_reference<U>>, // | |||
// conditions on F. It produces the clearest error messages | std::is_convertible<R, U>, // | |||
// in most compilers. | std::is_move_constructible<U>>::value>::type> | |||
// Impl really belongs in this scope as a local class but can't | operator OnceAction<U(Args...)>() && { // NOLINT | |||
// because MSVC produces duplicate symbols in different translation units | return Impl<U>(std::move(value_)); | |||
// in this case. Until MS fixes that bug we put Impl into the class scope | } | |||
// and put the typedef both here (for use in assert statement) and | ||||
// in the Impl class. But both definitions must be the same. | template <typename U, typename... Args, | |||
typedef typename Function<F>::Result Result; | typename = typename std::enable_if<conjunction< | |||
GTEST_COMPILE_ASSERT_( | // See the requirements documented on Return. | |||
!std::is_reference<Result>::value, | negation<std::is_same<void, U>>, // | |||
use_ReturnRef_instead_of_Return_to_return_a_reference); | negation<std::is_reference<U>>, // | |||
static_assert(!std::is_void<Result>::value, | std::is_convertible<const R&, U>, // | |||
"Can't use Return() on an action expected to return `void`."); | std::is_copy_constructible<U>>::value>::type> | |||
return Action<F>(new Impl<R, F>(value_)); | operator Action<U(Args...)>() const { // NOLINT | |||
return Impl<U>(value_); | ||||
} | } | |||
private: | private: | |||
// Implements the Return(x) action for a particular function type F. | // Implements the Return(x) action for a mock function that returns type U. | |||
template <typename R_, typename F> | template <typename U> | |||
class Impl : public ActionInterface<F> { | class Impl final { | |||
public: | public: | |||
typedef typename Function<F>::Result Result; | // The constructor used when the return value is allowed to move from the | |||
typedef typename Function<F>::ArgumentTuple ArgumentTuple; | // input value (i.e. we are converting to OnceAction). | |||
explicit Impl(R&& input_value) | ||||
: state_(new State(std::move(input_value))) {} | ||||
// The constructor used when the return value is not allowed to move from | ||||
// the input value (i.e. we are converting to Action). | ||||
explicit Impl(const R& input_value) : state_(new State(input_value)) {} | ||||
// The implicit cast is necessary when Result has more than one | U operator()() && { return std::move(state_->value); } | |||
// single-argument constructor (e.g. Result is std::vector<int>) and R | U operator()() const& { return state_->value; } | |||
// has a type conversion operator template. In that case, value_(value) | ||||
// won't compile as the compiler doesn't known which constructor of | ||||
// Result to call. ImplicitCast_ forces the compiler to convert R to | ||||
// Result without considering explicit constructors, thus resolving the | ||||
// ambiguity. value_ is then initialized using its copy constructor. | ||||
explicit Impl(const std::shared_ptr<R>& value) | ||||
: value_before_cast_(*value), | ||||
value_(ImplicitCast_<Result>(value_before_cast_)) {} | ||||
Result Perform(const ArgumentTuple&) override { return value_; } | ||||
private: | private: | |||
GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value, | // We put our state on the heap so that the compiler-generated copy/move | |||
Result_cannot_be_a_reference_type); | // constructors work correctly even when U is a reference-like type. This is | |||
// We save the value before casting just in case it is being cast to a | // necessary only because we eagerly create State::value (see the note on | |||
// wrapper type. | // that symbol for details). If we instead had only the input value as a | |||
R value_before_cast_; | // member then the default constructors would work fine. | |||
Result value_; | // | |||
// For example, when R is std::string and U is std::string_view, value is a | ||||
// reference to the string backed by input_value. The copy constructor would | ||||
// copy both, so that we wind up with a new input_value object (with the | ||||
// same contents) and a reference to the *old* input_value object rather | ||||
// than the new one. | ||||
struct State { | ||||
explicit State(const R& input_value_in) | ||||
: input_value(input_value_in), | ||||
// Make an implicit conversion to Result before initializing the U | ||||
// object we store, avoiding calling any explicit constructor of U | ||||
// from R. | ||||
// | ||||
// This simulates the language rules: a function with return type U | ||||
// that does `return R()` requires R to be implicitly convertible to | ||||
// U, and uses that path for the conversion, even U Result has an | ||||
// explicit constructor from R. | ||||
value(ImplicitCast_<U>(internal::as_const(input_value))) {} | ||||
// As above, but for the case where we're moving from the ReturnAction | ||||
// object because it's being used as a OnceAction. | ||||
explicit State(R&& input_value_in) | ||||
: input_value(std::move(input_value_in)), | ||||
// For the same reason as above we make an implicit conversion to U | ||||
// before initializing the value. | ||||
// | ||||
// Unlike above we provide the input value as an rvalue to the | ||||
// implicit conversion because this is a OnceAction: it's fine if it | ||||
// wants to consume the input value. | ||||
value(ImplicitCast_<U>(std::move(input_value))) {} | ||||
// A copy of the value originally provided by the user. We retain this in | ||||
// addition to the value of the mock function's result type below in case | ||||
// the latter is a reference-like type. See the std::string_view example | ||||
// in the documentation on Return. | ||||
R input_value; | ||||
// The value we actually return, as the type returned by the mock function | ||||
// itself. | ||||
// | ||||
// We eagerly initialize this here, rather than lazily doing the implicit | ||||
// conversion automatically each time Perform is called, for historical | ||||
// reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126) | ||||
// made the Action<U()> conversion operator eagerly convert the R value to | ||||
// U, but without keeping the R alive. This broke the use case discussed | ||||
// in the documentation for Return, making reference-like types such as | ||||
// std::string_view not safe to use as U where the input type R is a | ||||
// value-like type such as std::string. | ||||
// | ||||
// The example the commit gave was not very clear, nor was the issue | ||||
// thread (https://github.com/google/googlemock/issues/86), but it seems | ||||
// the worry was about reference-like input types R that flatten to a | ||||
// value-like type U when being implicitly converted. An example of this | ||||
// is std::vector<bool>::reference, which is often a proxy type with an | ||||
// reference to the underlying vector: | ||||
// | ||||
// // Helper method: have the mock function return bools according | ||||
// // to the supplied script. | ||||
// void SetActions(MockFunction<bool(size_t)>& mock, | ||||
// const std::vector<bool>& script) { | ||||
// for (size_t i = 0; i < script.size(); ++i) { | ||||
// EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i])); | ||||
// } | ||||
// } | ||||
// | ||||
// TEST(Foo, Bar) { | ||||
// // Set actions using a temporary vector, whose operator[] | ||||
// // returns proxy objects that references that will be | ||||
// // dangling once the call to SetActions finishes and the | ||||
// // vector is destroyed. | ||||
// MockFunction<bool(size_t)> mock; | ||||
// SetActions(mock, {false, true}); | ||||
// | ||||
// EXPECT_FALSE(mock.AsStdFunction()(0)); | ||||
// EXPECT_TRUE(mock.AsStdFunction()(1)); | ||||
// } | ||||
// | ||||
// This eager conversion helps with a simple case like this, but doesn't | ||||
// fully make these types work in general. For example the following still | ||||
// uses a dangling reference: | ||||
// | ||||
// TEST(Foo, Baz) { | ||||
// MockFunction<std::vector<std::string>()> mock; | ||||
// | ||||
// // Return the same vector twice, and then the empty vector | ||||
// // thereafter. | ||||
// auto action = Return(std::initializer_list<std::string>{ | ||||
// "taco", "burrito", | ||||
// }); | ||||
// | ||||
// EXPECT_CALL(mock, Call) | ||||
// .WillOnce(action) | ||||
// .WillOnce(action) | ||||
// .WillRepeatedly(Return(std::vector<std::string>{})); | ||||
// | ||||
// EXPECT_THAT(mock.AsStdFunction()(), | ||||
// ElementsAre("taco", "burrito")); | ||||
// EXPECT_THAT(mock.AsStdFunction()(), | ||||
// ElementsAre("taco", "burrito")); | ||||
// EXPECT_THAT(mock.AsStdFunction()(), IsEmpty()); | ||||
// } | ||||
// | ||||
U value; | ||||
}; | ||||
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); | const std::shared_ptr<State> state_; | |||
}; | }; | |||
// Partially specialize for ByMoveWrapper. This version of ReturnAction will | R value_; | |||
// move its contents instead. | }; | |||
template <typename R_, typename F> | ||||
class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { | ||||
public: | ||||
typedef typename Function<F>::Result Result; | ||||
typedef typename Function<F>::ArgumentTuple ArgumentTuple; | ||||
explicit Impl(const std::shared_ptr<R>& wrapper) | // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T. | |||
: performed_(false), wrapper_(wrapper) {} | // | |||
// This version applies the type system-defeating hack of moving from T even in | ||||
// the const call operator, checking at runtime that it isn't called more than | ||||
// once, since the user has declared their intent to do so by using ByMove. | ||||
template <typename T> | ||||
class ReturnAction<ByMoveWrapper<T>> final { | ||||
public: | ||||
explicit ReturnAction(ByMoveWrapper<T> wrapper) | ||||
: state_(new State(std::move(wrapper.payload))) {} | ||||
Result Perform(const ArgumentTuple&) override { | T operator()() const { | |||
GTEST_CHECK_(!performed_) | GTEST_CHECK_(!state_->called) | |||
<< "A ByMove() action should only be performed once."; | << "A ByMove() action must be performed at most once."; | |||
performed_ = true; | ||||
return std::move(wrapper_->payload); | ||||
} | ||||
private: | state_->called = true; | |||
bool performed_; | return std::move(state_->value); | |||
const std::shared_ptr<R> wrapper_; | } | |||
private: | ||||
// We store our state on the heap so that we are copyable as required by | ||||
// Action, despite the fact that we are stateful and T may not be copyable. | ||||
struct State { | ||||
explicit State(T&& value_in) : value(std::move(value_in)) {} | ||||
T value; | ||||
bool called = false; | ||||
}; | }; | |||
const std::shared_ptr<R> value_; | const std::shared_ptr<State> state_; | |||
}; | }; | |||
// Implements the ReturnNull() action. | // Implements the ReturnNull() action. | |||
class ReturnNullAction { | class ReturnNullAction { | |||
public: | public: | |||
// Allows ReturnNull() to be used in any pointer-returning function. In C++11 | // Allows ReturnNull() to be used in any pointer-returning function. In C++11 | |||
// this is enforced by returning nullptr, and in non-C++11 by asserting a | // this is enforced by returning nullptr, and in non-C++11 by asserting a | |||
// pointer type on compile time. | // pointer type on compile time. | |||
template <typename Result, typename ArgumentTuple> | template <typename Result, typename ArgumentTuple> | |||
static Result Perform(const ArgumentTuple&) { | static Result Perform(const ArgumentTuple&) { | |||
skipping to change at line 761 | skipping to change at line 1155 | |||
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT | explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT | |||
// This template type conversion operator allows ReturnRef(x) to be | // This template type conversion operator allows ReturnRef(x) to be | |||
// used in ANY function that returns a reference to x's type. | // used in ANY function that returns a reference to x's type. | |||
template <typename F> | template <typename F> | |||
operator Action<F>() const { | operator Action<F>() const { | |||
typedef typename Function<F>::Result Result; | typedef typename Function<F>::Result Result; | |||
// Asserts that the function return type is a reference. This | // Asserts that the function return type is a reference. This | |||
// catches the user error of using ReturnRef(x) when Return(x) | // catches the user error of using ReturnRef(x) when Return(x) | |||
// should be used, and generates some helpful error message. | // should be used, and generates some helpful error message. | |||
GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value, | static_assert(std::is_reference<Result>::value, | |||
use_Return_instead_of_ReturnRef_to_return_a_value); | "use Return instead of ReturnRef to return a value"); | |||
return Action<F>(new Impl<F>(ref_)); | return Action<F>(new Impl<F>(ref_)); | |||
} | } | |||
private: | private: | |||
// Implements the ReturnRef(x) action for a particular function type F. | // Implements the ReturnRef(x) action for a particular function type F. | |||
template <typename F> | template <typename F> | |||
class Impl : public ActionInterface<F> { | class Impl : public ActionInterface<F> { | |||
public: | public: | |||
typedef typename Function<F>::Result Result; | typedef typename Function<F>::Result Result; | |||
typedef typename Function<F>::ArgumentTuple ArgumentTuple; | typedef typename Function<F>::ArgumentTuple ArgumentTuple; | |||
skipping to change at line 803 | skipping to change at line 1197 | |||
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT | explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT | |||
// This template type conversion operator allows ReturnRefOfCopy(x) to be | // This template type conversion operator allows ReturnRefOfCopy(x) to be | |||
// used in ANY function that returns a reference to x's type. | // used in ANY function that returns a reference to x's type. | |||
template <typename F> | template <typename F> | |||
operator Action<F>() const { | operator Action<F>() const { | |||
typedef typename Function<F>::Result Result; | typedef typename Function<F>::Result Result; | |||
// Asserts that the function return type is a reference. This | // Asserts that the function return type is a reference. This | |||
// catches the user error of using ReturnRefOfCopy(x) when Return(x) | // catches the user error of using ReturnRefOfCopy(x) when Return(x) | |||
// should be used, and generates some helpful error message. | // should be used, and generates some helpful error message. | |||
GTEST_COMPILE_ASSERT_( | static_assert(std::is_reference<Result>::value, | |||
std::is_reference<Result>::value, | "use Return instead of ReturnRefOfCopy to return a value"); | |||
use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); | ||||
return Action<F>(new Impl<F>(value_)); | return Action<F>(new Impl<F>(value_)); | |||
} | } | |||
private: | private: | |||
// Implements the ReturnRefOfCopy(x) action for a particular function type F. | // Implements the ReturnRefOfCopy(x) action for a particular function type F. | |||
template <typename F> | template <typename F> | |||
class Impl : public ActionInterface<F> { | class Impl : public ActionInterface<F> { | |||
public: | public: | |||
typedef typename Function<F>::Result Result; | typedef typename Function<F>::Result Result; | |||
typedef typename Function<F>::ArgumentTuple ArgumentTuple; | typedef typename Function<F>::ArgumentTuple ArgumentTuple; | |||
skipping to change at line 841 | skipping to change at line 1234 | |||
class ReturnRoundRobinAction { | class ReturnRoundRobinAction { | |||
public: | public: | |||
explicit ReturnRoundRobinAction(std::vector<T> values) { | explicit ReturnRoundRobinAction(std::vector<T> values) { | |||
GTEST_CHECK_(!values.empty()) | GTEST_CHECK_(!values.empty()) | |||
<< "ReturnRoundRobin requires at least one element."; | << "ReturnRoundRobin requires at least one element."; | |||
state_->values = std::move(values); | state_->values = std::move(values); | |||
} | } | |||
template <typename... Args> | template <typename... Args> | |||
T operator()(Args&&...) const { | T operator()(Args&&...) const { | |||
return state_->Next(); | return state_->Next(); | |||
} | } | |||
private: | private: | |||
struct State { | struct State { | |||
T Next() { | T Next() { | |||
T ret_val = values[i++]; | T ret_val = values[i++]; | |||
if (i == values.size()) i = 0; | if (i == values.size()) i = 0; | |||
return ret_val; | return ret_val; | |||
} | } | |||
skipping to change at line 864 | skipping to change at line 1257 | |||
}; | }; | |||
std::shared_ptr<State> state_ = std::make_shared<State>(); | std::shared_ptr<State> state_ = std::make_shared<State>(); | |||
}; | }; | |||
// Implements the polymorphic DoDefault() action. | // Implements the polymorphic DoDefault() action. | |||
class DoDefaultAction { | class DoDefaultAction { | |||
public: | public: | |||
// This template type conversion operator allows DoDefault() to be | // This template type conversion operator allows DoDefault() to be | |||
// used in any function. | // used in any function. | |||
template <typename F> | template <typename F> | |||
operator Action<F>() const { return Action<F>(); } // NOLINT | operator Action<F>() const { | |||
return Action<F>(); | ||||
} // NOLINT | ||||
}; | }; | |||
// Implements the Assign action to set a given pointer referent to a | // Implements the Assign action to set a given pointer referent to a | |||
// particular value. | // particular value. | |||
template <typename T1, typename T2> | template <typename T1, typename T2> | |||
class AssignAction { | class AssignAction { | |||
public: | public: | |||
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} | AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} | |||
template <typename Result, typename ArgumentTuple> | template <typename Result, typename ArgumentTuple> | |||
skipping to change at line 892 | skipping to change at line 1287 | |||
}; | }; | |||
#if !GTEST_OS_WINDOWS_MOBILE | #if !GTEST_OS_WINDOWS_MOBILE | |||
// Implements the SetErrnoAndReturn action to simulate return from | // Implements the SetErrnoAndReturn action to simulate return from | |||
// various system calls and libc functions. | // various system calls and libc functions. | |||
template <typename T> | template <typename T> | |||
class SetErrnoAndReturnAction { | class SetErrnoAndReturnAction { | |||
public: | public: | |||
SetErrnoAndReturnAction(int errno_value, T result) | SetErrnoAndReturnAction(int errno_value, T result) | |||
: errno_(errno_value), | : errno_(errno_value), result_(result) {} | |||
result_(result) {} | ||||
template <typename Result, typename ArgumentTuple> | template <typename Result, typename ArgumentTuple> | |||
Result Perform(const ArgumentTuple& /* args */) const { | Result Perform(const ArgumentTuple& /* args */) const { | |||
errno = errno_; | errno = errno_; | |||
return result_; | return result_; | |||
} | } | |||
private: | private: | |||
const int errno_; | const int errno_; | |||
const T result_; | const T result_; | |||
}; | }; | |||
skipping to change at line 1004 | skipping to change at line 1398 | |||
explicit Impl(const A& action) : action_(action) {} | explicit Impl(const A& action) : action_(action) {} | |||
void Perform(const ArgumentTuple& args) override { | void Perform(const ArgumentTuple& args) override { | |||
// Performs the action and ignores its result. | // Performs the action and ignores its result. | |||
action_.Perform(args); | action_.Perform(args); | |||
} | } | |||
private: | private: | |||
// Type OriginalFunction is the same as F except that its return | // Type OriginalFunction is the same as F except that its return | |||
// type is IgnoredValue. | // type is IgnoredValue. | |||
typedef typename internal::Function<F>::MakeResultIgnoredValue | typedef | |||
OriginalFunction; | typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; | |||
const Action<OriginalFunction> action_; | const Action<OriginalFunction> action_; | |||
}; | }; | |||
const A action_; | const A action_; | |||
}; | }; | |||
template <typename InnerAction, size_t... I> | template <typename InnerAction, size_t... I> | |||
struct WithArgsAction { | struct WithArgsAction { | |||
InnerAction action; | InnerAction inner_action; | |||
// The inner action could be anything convertible to Action<X>. | // The signature of the function as seen by the inner action, given an out | |||
// We use the conversion operator to detect the signature of the inner Action. | // action with the given result and argument types. | |||
template <typename R, typename... Args> | template <typename R, typename... Args> | |||
using InnerSignature = | ||||
R(typename std::tuple_element<I, std::tuple<Args...>>::type...); | ||||
// Rather than a call operator, we must define conversion operators to | ||||
// particular action types. This is necessary for embedded actions like | ||||
// DoDefault(), which rely on an action conversion operators rather than | ||||
// providing a call operator because even with a particular set of arguments | ||||
// they don't have a fixed return type. | ||||
template <typename R, typename... Args, | ||||
typename std::enable_if< | ||||
std::is_convertible< | ||||
InnerAction, | ||||
// Unfortunately we can't use the InnerSignature alias here; | ||||
// MSVC complains about the I parameter pack not being | ||||
// expanded (error C3520) despite it being expanded in the | ||||
// type alias. | ||||
OnceAction<R(typename std::tuple_element< | ||||
I, std::tuple<Args...>>::type...)>>::value, | ||||
int>::type = 0> | ||||
operator OnceAction<R(Args...)>() && { // NOLINT | ||||
struct OA { | ||||
OnceAction<InnerSignature<R, Args...>> inner_action; | ||||
R operator()(Args&&... args) && { | ||||
return std::move(inner_action) | ||||
.Call(std::get<I>( | ||||
std::forward_as_tuple(std::forward<Args>(args)...))...); | ||||
} | ||||
}; | ||||
return OA{std::move(inner_action)}; | ||||
} | ||||
template <typename R, typename... Args, | ||||
typename std::enable_if< | ||||
std::is_convertible< | ||||
const InnerAction&, | ||||
// Unfortunately we can't use the InnerSignature alias here; | ||||
// MSVC complains about the I parameter pack not being | ||||
// expanded (error C3520) despite it being expanded in the | ||||
// type alias. | ||||
Action<R(typename std::tuple_element< | ||||
I, std::tuple<Args...>>::type...)>>::value, | ||||
int>::type = 0> | ||||
operator Action<R(Args...)>() const { // NOLINT | operator Action<R(Args...)>() const { // NOLINT | |||
using TupleType = std::tuple<Args...>; | Action<InnerSignature<R, Args...>> converted(inner_action); | |||
Action<R(typename std::tuple_element<I, TupleType>::type...)> | ||||
converted(action); | ||||
return [converted](Args... args) -> R { | return [converted](Args&&... args) -> R { | |||
return converted.Perform(std::forward_as_tuple( | return converted.Perform(std::forward_as_tuple( | |||
std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); | std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); | |||
}; | }; | |||
} | } | |||
}; | }; | |||
template <typename... Actions> | template <typename... Actions> | |||
struct DoAllAction { | class DoAllAction; | |||
private: | ||||
// Base case: only a single action. | ||||
template <typename FinalAction> | ||||
class DoAllAction<FinalAction> { | ||||
public: | ||||
struct UserConstructorTag {}; | ||||
template <typename T> | template <typename T> | |||
using NonFinalType = | explicit DoAllAction(UserConstructorTag, T&& action) | |||
typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; | : final_action_(std::forward<T>(action)) {} | |||
template <typename ActionT, size_t... I> | // Rather than a call operator, we must define conversion operators to | |||
std::vector<ActionT> Convert(IndexSequence<I...>) const { | // particular action types. This is necessary for embedded actions like | |||
return {ActionT(std::get<I>(actions))...}; | // DoDefault(), which rely on an action conversion operators rather than | |||
// providing a call operator because even with a particular set of arguments | ||||
// they don't have a fixed return type. | ||||
template <typename R, typename... Args, | ||||
typename std::enable_if< | ||||
std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value, | ||||
int>::type = 0> | ||||
operator OnceAction<R(Args...)>() && { // NOLINT | ||||
return std::move(final_action_); | ||||
} | } | |||
template < | ||||
typename R, typename... Args, | ||||
typename std::enable_if< | ||||
std::is_convertible<const FinalAction&, Action<R(Args...)>>::value, | ||||
int>::type = 0> | ||||
operator Action<R(Args...)>() const { // NOLINT | ||||
return final_action_; | ||||
} | ||||
private: | ||||
FinalAction final_action_; | ||||
}; | ||||
// Recursive case: support N actions by calling the initial action and then | ||||
// calling through to the base class containing N-1 actions. | ||||
template <typename InitialAction, typename... OtherActions> | ||||
class DoAllAction<InitialAction, OtherActions...> | ||||
: private DoAllAction<OtherActions...> { | ||||
private: | ||||
using Base = DoAllAction<OtherActions...>; | ||||
// The type of reference that should be provided to an initial action for a | ||||
// mocked function parameter of type T. | ||||
// | ||||
// There are two quirks here: | ||||
// | ||||
// * Unlike most forwarding functions, we pass scalars through by value. | ||||
// This isn't strictly necessary because an lvalue reference would work | ||||
// fine too and be consistent with other non-reference types, but it's | ||||
// perhaps less surprising. | ||||
// | ||||
// For example if the mocked function has signature void(int), then it | ||||
// might seem surprising for the user's initial action to need to be | ||||
// convertible to Action<void(const int&)>. This is perhaps less | ||||
// surprising for a non-scalar type where there may be a performance | ||||
// impact, or it might even be impossible, to pass by value. | ||||
// | ||||
// * More surprisingly, `const T&` is often not a const reference type. | ||||
// By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to | ||||
// U& or U&& for some non-scalar type U, then InitialActionArgType<T> is | ||||
// U&. In other words, we may hand over a non-const reference. | ||||
// | ||||
// So for example, given some non-scalar type Obj we have the following | ||||
// mappings: | ||||
// | ||||
// T InitialActionArgType<T> | ||||
// ------- ----------------------- | ||||
// Obj const Obj& | ||||
// Obj& Obj& | ||||
// Obj&& Obj& | ||||
// const Obj const Obj& | ||||
// const Obj& const Obj& | ||||
// const Obj&& const Obj& | ||||
// | ||||
// In other words, the initial actions get a mutable view of an non-scalar | ||||
// argument if and only if the mock function itself accepts a non-const | ||||
// reference type. They are never given an rvalue reference to an | ||||
// non-scalar type. | ||||
// | ||||
// This situation makes sense if you imagine use with a matcher that is | ||||
// designed to write through a reference. For example, if the caller wants | ||||
// to fill in a reference argument and then return a canned value: | ||||
// | ||||
// EXPECT_CALL(mock, Call) | ||||
// .WillOnce(DoAll(SetArgReferee<0>(17), Return(19))); | ||||
// | ||||
template <typename T> | ||||
using InitialActionArgType = | ||||
typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; | ||||
public: | public: | |||
std::tuple<Actions...> actions; | struct UserConstructorTag {}; | |||
template <typename R, typename... Args> | template <typename T, typename... U> | |||
explicit DoAllAction(UserConstructorTag, T&& initial_action, | ||||
U&&... other_actions) | ||||
: Base({}, std::forward<U>(other_actions)...), | ||||
initial_action_(std::forward<T>(initial_action)) {} | ||||
template <typename R, typename... Args, | ||||
typename std::enable_if< | ||||
conjunction< | ||||
// Both the initial action and the rest must support | ||||
// conversion to OnceAction. | ||||
std::is_convertible< | ||||
InitialAction, | ||||
OnceAction<void(InitialActionArgType<Args>...)>>, | ||||
std::is_convertible<Base, OnceAction<R(Args...)>>>::value, | ||||
int>::type = 0> | ||||
operator OnceAction<R(Args...)>() && { // NOLINT | ||||
// Return an action that first calls the initial action with arguments | ||||
// filtered through InitialActionArgType, then forwards arguments directly | ||||
// to the base class to deal with the remaining actions. | ||||
struct OA { | ||||
OnceAction<void(InitialActionArgType<Args>...)> initial_action; | ||||
OnceAction<R(Args...)> remaining_actions; | ||||
R operator()(Args... args) && { | ||||
std::move(initial_action) | ||||
.Call(static_cast<InitialActionArgType<Args>>(args)...); | ||||
return std::move(remaining_actions).Call(std::forward<Args>(args)...); | ||||
} | ||||
}; | ||||
return OA{ | ||||
std::move(initial_action_), | ||||
std::move(static_cast<Base&>(*this)), | ||||
}; | ||||
} | ||||
template < | ||||
typename R, typename... Args, | ||||
typename std::enable_if< | ||||
conjunction< | ||||
// Both the initial action and the rest must support conversion to | ||||
// Action. | ||||
std::is_convertible<const InitialAction&, | ||||
Action<void(InitialActionArgType<Args>...)>>, | ||||
std::is_convertible<const Base&, Action<R(Args...)>>>::value, | ||||
int>::type = 0> | ||||
operator Action<R(Args...)>() const { // NOLINT | operator Action<R(Args...)>() const { // NOLINT | |||
struct Op { | // Return an action that first calls the initial action with arguments | |||
std::vector<Action<void(NonFinalType<Args>...)>> converted; | // filtered through InitialActionArgType, then forwards arguments directly | |||
Action<R(Args...)> last; | // to the base class to deal with the remaining actions. | |||
struct OA { | ||||
Action<void(InitialActionArgType<Args>...)> initial_action; | ||||
Action<R(Args...)> remaining_actions; | ||||
R operator()(Args... args) const { | R operator()(Args... args) const { | |||
auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...); | initial_action.Perform(std::forward_as_tuple( | |||
for (auto& a : converted) { | static_cast<InitialActionArgType<Args>>(args)...)); | |||
a.Perform(tuple_args); | ||||
} | return remaining_actions.Perform( | |||
return last.Perform(std::move(tuple_args)); | std::forward_as_tuple(std::forward<Args>(args)...)); | |||
} | } | |||
}; | }; | |||
return Op{Convert<Action<void(NonFinalType<Args>...)>>( | ||||
MakeIndexSequence<sizeof...(Actions) - 1>()), | return OA{ | |||
std::get<sizeof...(Actions) - 1>(actions)}; | initial_action_, | |||
static_cast<const Base&>(*this), | ||||
}; | ||||
} | } | |||
private: | ||||
InitialAction initial_action_; | ||||
}; | }; | |||
template <typename T, typename... Params> | template <typename T, typename... Params> | |||
struct ReturnNewAction { | struct ReturnNewAction { | |||
T* operator()() const { | T* operator()() const { | |||
return internal::Apply( | return internal::Apply( | |||
[](const Params&... unpacked_params) { | [](const Params&... unpacked_params) { | |||
return new T(unpacked_params...); | return new T(unpacked_params...); | |||
}, | }, | |||
params); | params); | |||
} | } | |||
std::tuple<Params...> params; | std::tuple<Params...> params; | |||
}; | }; | |||
template <size_t k> | template <size_t k> | |||
struct ReturnArgAction { | struct ReturnArgAction { | |||
template <typename... Args> | template <typename... Args, | |||
auto operator()(const Args&... args) const -> | typename = typename std::enable_if<(k < sizeof...(Args))>::type> | |||
typename std::tuple_element<k, std::tuple<Args...>>::type { | auto operator()(Args&&... args) const -> decltype(std::get<k>( | |||
return std::get<k>(std::tie(args...)); | std::forward_as_tuple(std::forward<Args>(args)...))) { | |||
return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...)); | ||||
} | } | |||
}; | }; | |||
template <size_t k, typename Ptr> | template <size_t k, typename Ptr> | |||
struct SaveArgAction { | struct SaveArgAction { | |||
Ptr pointer; | Ptr pointer; | |||
template <typename... Args> | template <typename... Args> | |||
void operator()(const Args&... args) const { | void operator()(const Args&... args) const { | |||
*pointer = std::get<k>(std::tie(args...)); | *pointer = std::get<k>(std::tie(args...)); | |||
skipping to change at line 1205 | skipping to change at line 1784 | |||
// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); | // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); | |||
// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); | // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); | |||
typedef internal::IgnoredValue Unused; | typedef internal::IgnoredValue Unused; | |||
// Creates an action that does actions a1, a2, ..., sequentially in | // Creates an action that does actions a1, a2, ..., sequentially in | |||
// each invocation. All but the last action will have a readonly view of the | // each invocation. All but the last action will have a readonly view of the | |||
// arguments. | // arguments. | |||
template <typename... Action> | template <typename... Action> | |||
internal::DoAllAction<typename std::decay<Action>::type...> DoAll( | internal::DoAllAction<typename std::decay<Action>::type...> DoAll( | |||
Action&&... action) { | Action&&... action) { | |||
return {std::forward_as_tuple(std::forward<Action>(action)...)}; | return internal::DoAllAction<typename std::decay<Action>::type...>( | |||
{}, std::forward<Action>(action)...); | ||||
} | } | |||
// WithArg<k>(an_action) creates an action that passes the k-th | // WithArg<k>(an_action) creates an action that passes the k-th | |||
// (0-based) argument of the mock function to an_action and performs | // (0-based) argument of the mock function to an_action and performs | |||
// it. It adapts an action accepting one argument to one that accepts | // it. It adapts an action accepting one argument to one that accepts | |||
// multiple arguments. For convenience, we also provide | // multiple arguments. For convenience, we also provide | |||
// WithArgs<k>(an_action) (defined below) as a synonym. | // WithArgs<k>(an_action) (defined below) as a synonym. | |||
template <size_t k, typename InnerAction> | template <size_t k, typename InnerAction> | |||
internal::WithArgsAction<typename std::decay<InnerAction>::type, k> | internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg( | |||
WithArg(InnerAction&& action) { | InnerAction&& action) { | |||
return {std::forward<InnerAction>(action)}; | return {std::forward<InnerAction>(action)}; | |||
} | } | |||
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes | // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes | |||
// the selected arguments of the mock function to an_action and | // the selected arguments of the mock function to an_action and | |||
// performs it. It serves as an adaptor between actions with | // performs it. It serves as an adaptor between actions with | |||
// different argument lists. | // different argument lists. | |||
template <size_t k, size_t... ks, typename InnerAction> | template <size_t k, size_t... ks, typename InnerAction> | |||
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> | internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> | |||
WithArgs(InnerAction&& action) { | WithArgs(InnerAction&& action) { | |||
return {std::forward<InnerAction>(action)}; | return {std::forward<InnerAction>(action)}; | |||
} | } | |||
// WithoutArgs(inner_action) can be used in a mock function with a | // WithoutArgs(inner_action) can be used in a mock function with a | |||
// non-empty argument list to perform inner_action, which takes no | // non-empty argument list to perform inner_action, which takes no | |||
// argument. In other words, it adapts an action accepting no | // argument. In other words, it adapts an action accepting no | |||
// argument to one that accepts (and ignores) arguments. | // argument to one that accepts (and ignores) arguments. | |||
template <typename InnerAction> | template <typename InnerAction> | |||
internal::WithArgsAction<typename std::decay<InnerAction>::type> | internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs( | |||
WithoutArgs(InnerAction&& action) { | InnerAction&& action) { | |||
return {std::forward<InnerAction>(action)}; | return {std::forward<InnerAction>(action)}; | |||
} | } | |||
// Creates an action that returns 'value'. 'value' is passed by value | // Creates an action that returns a value. | |||
// instead of const reference - otherwise Return("string literal") | // | |||
// will trigger a compiler error about using array as initializer. | // The returned type can be used with a mock function returning a non-void, | |||
// non-reference type U as follows: | ||||
// | ||||
// * If R is convertible to U and U is move-constructible, then the action can | ||||
// be used with WillOnce. | ||||
// | ||||
// * If const R& is convertible to U and U is copy-constructible, then the | ||||
// action can be used with both WillOnce and WillRepeatedly. | ||||
// | ||||
// The mock expectation contains the R value from which the U return value is | ||||
// constructed (a move/copy of the argument to Return). This means that the R | ||||
// value will survive at least until the mock object's expectations are cleared | ||||
// or the mock object is destroyed, meaning that U can safely be a | ||||
// reference-like type such as std::string_view: | ||||
// | ||||
// // The mock function returns a view of a copy of the string fed to | ||||
// // Return. The view is valid even after the action is performed. | ||||
// MockFunction<std::string_view()> mock; | ||||
// EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco"))); | ||||
// const std::string_view result = mock.AsStdFunction()(); | ||||
// EXPECT_EQ("taco", result); | ||||
// | ||||
template <typename R> | template <typename R> | |||
internal::ReturnAction<R> Return(R value) { | internal::ReturnAction<R> Return(R value) { | |||
return internal::ReturnAction<R>(std::move(value)); | return internal::ReturnAction<R>(std::move(value)); | |||
} | } | |||
// Creates an action that returns NULL. | // Creates an action that returns NULL. | |||
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { | inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { | |||
return MakePolymorphicAction(internal::ReturnNullAction()); | return MakePolymorphicAction(internal::ReturnNullAction()); | |||
} | } | |||
skipping to change at line 1275 | skipping to change at line 1876 | |||
internal::ReturnRefAction<R> ReturnRef(R&&) = delete; | internal::ReturnRefAction<R> ReturnRef(R&&) = delete; | |||
// Creates an action that returns the reference to a copy of the | // Creates an action that returns the reference to a copy of the | |||
// argument. The copy is created when the action is constructed and | // argument. The copy is created when the action is constructed and | |||
// lives as long as the action. | // lives as long as the action. | |||
template <typename R> | template <typename R> | |||
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { | inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { | |||
return internal::ReturnRefOfCopyAction<R>(x); | return internal::ReturnRefOfCopyAction<R>(x); | |||
} | } | |||
// DEPRECATED: use Return(x) directly with WillOnce. | ||||
// | ||||
// Modifies the parent action (a Return() action) to perform a move of the | // Modifies the parent action (a Return() action) to perform a move of the | |||
// argument instead of a copy. | // argument instead of a copy. | |||
// Return(ByMove()) actions can only be executed once and will assert this | // Return(ByMove()) actions can only be executed once and will assert this | |||
// invariant. | // invariant. | |||
template <typename R> | template <typename R> | |||
internal::ByMoveWrapper<R> ByMove(R x) { | internal::ByMoveWrapper<R> ByMove(R x) { | |||
return internal::ByMoveWrapper<R>(std::move(x)); | return internal::ByMoveWrapper<R>(std::move(x)); | |||
} | } | |||
// Creates an action that returns an element of `vals`. Calling this action will | // Creates an action that returns an element of `vals`. Calling this action will | |||
skipping to change at line 1321 | skipping to change at line 1924 | |||
} | } | |||
// The following version is DEPRECATED. | // The following version is DEPRECATED. | |||
template <size_t N, typename T> | template <size_t N, typename T> | |||
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { | internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { | |||
return {std::move(value)}; | return {std::move(value)}; | |||
} | } | |||
// Creates an action that sets a pointer referent to a given value. | // Creates an action that sets a pointer referent to a given value. | |||
template <typename T1, typename T2> | template <typename T1, typename T2> | |||
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { | PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) { | |||
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); | return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); | |||
} | } | |||
#if !GTEST_OS_WINDOWS_MOBILE | #if !GTEST_OS_WINDOWS_MOBILE | |||
// Creates an action that sets errno and returns the appropriate error. | // Creates an action that sets errno and returns the appropriate error. | |||
template <typename T> | template <typename T> | |||
PolymorphicAction<internal::SetErrnoAndReturnAction<T> > | PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn( | |||
SetErrnoAndReturn(int errval, T result) { | int errval, T result) { | |||
return MakePolymorphicAction( | return MakePolymorphicAction( | |||
internal::SetErrnoAndReturnAction<T>(errval, result)); | internal::SetErrnoAndReturnAction<T>(errval, result)); | |||
} | } | |||
#endif // !GTEST_OS_WINDOWS_MOBILE | #endif // !GTEST_OS_WINDOWS_MOBILE | |||
// Various overloads for Invoke(). | // Various overloads for Invoke(). | |||
// Legacy function. | // Legacy function. | |||
// Actions can now be implicitly constructed from callables. No need to create | // Actions can now be implicitly constructed from callables. No need to create | |||
skipping to change at line 1484 | skipping to change at line 2087 | |||
// arguments than it needs. The ExcessiveArg type is used to | // arguments than it needs. The ExcessiveArg type is used to | |||
// represent those excessive arguments. In order to keep the compiler | // represent those excessive arguments. In order to keep the compiler | |||
// error messages tractable, we define it in the testing namespace | // error messages tractable, we define it in the testing namespace | |||
// instead of testing::internal. However, this is an INTERNAL TYPE | // instead of testing::internal. However, this is an INTERNAL TYPE | |||
// and subject to change without notice, so a user MUST NOT USE THIS | // and subject to change without notice, so a user MUST NOT USE THIS | |||
// TYPE DIRECTLY. | // TYPE DIRECTLY. | |||
struct ExcessiveArg {}; | struct ExcessiveArg {}; | |||
// Builds an implementation of an Action<> for some particular signature, using | // Builds an implementation of an Action<> for some particular signature, using | |||
// a class defined by an ACTION* macro. | // a class defined by an ACTION* macro. | |||
template <typename F, typename Impl> struct ActionImpl; | template <typename F, typename Impl> | |||
struct ActionImpl; | ||||
template <typename Impl> | template <typename Impl> | |||
struct ImplBase { | struct ImplBase { | |||
struct Holder { | struct Holder { | |||
// Allows each copy of the Action<> to get to the Impl. | // Allows each copy of the Action<> to get to the Impl. | |||
explicit operator const Impl&() const { return *ptr; } | explicit operator const Impl&() const { return *ptr; } | |||
std::shared_ptr<Impl> ptr; | std::shared_ptr<Impl> ptr; | |||
}; | }; | |||
using type = typename std::conditional<std::is_constructible<Impl>::value, | using type = typename std::conditional<std::is_constructible<Impl>::value, | |||
Impl, Holder>::type; | Impl, Holder>::type; | |||
}; | }; | |||
template <typename R, typename... Args, typename Impl> | template <typename R, typename... Args, typename Impl> | |||
struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { | struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { | |||
using Base = typename ImplBase<Impl>::type; | using Base = typename ImplBase<Impl>::type; | |||
using function_type = R(Args...); | using function_type = R(Args...); | |||
using args_type = std::tuple<Args...>; | using args_type = std::tuple<Args...>; | |||
ActionImpl() = default; // Only defined if appropriate for Base. | ActionImpl() = default; // Only defined if appropriate for Base. | |||
explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { } | explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {} | |||
R operator()(Args&&... arg) const { | R operator()(Args&&... arg) const { | |||
static constexpr size_t kMaxArgs = | static constexpr size_t kMaxArgs = | |||
sizeof...(Args) <= 10 ? sizeof...(Args) : 10; | sizeof...(Args) <= 10 ? sizeof...(Args) : 10; | |||
return Apply(MakeIndexSequence<kMaxArgs>{}, | return Apply(MakeIndexSequence<kMaxArgs>{}, | |||
MakeIndexSequence<10 - kMaxArgs>{}, | MakeIndexSequence<10 - kMaxArgs>{}, | |||
args_type{std::forward<Args>(arg)...}); | args_type{std::forward<Args>(arg)...}); | |||
} | } | |||
template <std::size_t... arg_id, std::size_t... excess_id> | template <std::size_t... arg_id, std::size_t... excess_id> | |||
R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, | R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, | |||
const args_type& args) const { | const args_type& args) const { | |||
// Impl need not be specific to the signature of action being implemented; | // Impl need not be specific to the signature of action being implemented; | |||
// only the implementing function body needs to have all of the specific | // only the implementing function body needs to have all of the specific | |||
// types instantiated. Up to 10 of the args that are provided by the | // types instantiated. Up to 10 of the args that are provided by the | |||
// args_type get passed, followed by a dummy of unspecified type for the | // args_type get passed, followed by a dummy of unspecified type for the | |||
// remainder up to 10 explicit args. | // remainder up to 10 explicit args. | |||
static constexpr ExcessiveArg kExcessArg{}; | static constexpr ExcessiveArg kExcessArg{}; | |||
return static_cast<const Impl&>(*this).template gmock_PerformImpl< | return static_cast<const Impl&>(*this) | |||
/*function_type=*/function_type, /*return_type=*/R, | .template gmock_PerformImpl< | |||
/*args_type=*/args_type, | /*function_type=*/function_type, /*return_type=*/R, | |||
/*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>( | /*args_type=*/args_type, | |||
/*args=*/args, std::get<arg_id>(args)..., | /*argN_type=*/ | |||
((void)excess_id, kExcessArg)...); | typename std::tuple_element<arg_id, args_type>::type...>( | |||
/*args=*/args, std::get<arg_id>(args)..., | ||||
((void)excess_id, kExcessArg)...); | ||||
} | } | |||
}; | }; | |||
// Stores a default-constructed Impl as part of the Action<>'s | // Stores a default-constructed Impl as part of the Action<>'s | |||
// std::function<>. The Impl should be trivial to copy. | // std::function<>. The Impl should be trivial to copy. | |||
template <typename F, typename Impl> | template <typename F, typename Impl> | |||
::testing::Action<F> MakeAction() { | ::testing::Action<F> MakeAction() { | |||
return ::testing::Action<F>(ActionImpl<F, Impl>()); | return ::testing::Action<F>(ActionImpl<F, Impl>()); | |||
} | } | |||
// Stores just the one given instance of Impl. | // Stores just the one given instance of Impl. | |||
template <typename F, typename Impl> | template <typename F, typename Impl> | |||
::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { | ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { | |||
return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); | return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); | |||
} | } | |||
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ | #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ | |||
, const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ | , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ | |||
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ | #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ | |||
const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ | const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ | |||
GMOCK_INTERNAL_ARG_UNUSED, , 10) | GMOCK_INTERNAL_ARG_UNUSED, , 10) | |||
#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i | #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i | |||
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ | #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ | |||
const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) | const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) | |||
#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type | #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type | |||
#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ | #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ | |||
GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) | GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) | |||
skipping to change at line 1586 | skipping to change at line 2192 | |||
#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ | #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ | |||
, param(::std::forward<param##_type>(gmock_p##i)) | , param(::std::forward<param##_type>(gmock_p##i)) | |||
#define GMOCK_ACTION_INIT_PARAMS_(params) \ | #define GMOCK_ACTION_INIT_PARAMS_(params) \ | |||
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) | |||
#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; | #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; | |||
#define GMOCK_ACTION_FIELD_PARAMS_(params) \ | #define GMOCK_ACTION_FIELD_PARAMS_(params) \ | |||
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) | GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) | |||
#define GMOCK_INTERNAL_ACTION(name, full_name, params) \ | #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ | |||
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ | template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ | |||
class full_name { \ | class full_name { \ | |||
public: \ | public: \ | |||
explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ | explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ | |||
: impl_(std::make_shared<gmock_Impl>( \ | : impl_(std::make_shared<gmock_Impl>( \ | |||
GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \ | GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \ | |||
full_name(const full_name&) = default; \ | full_name(const full_name&) = default; \ | |||
full_name(full_name&&) noexcept = default; \ | full_name(full_name&&) noexcept = default; \ | |||
template <typename F> \ | template <typename F> \ | |||
operator ::testing::Action<F>() const { \ | operator ::testing::Action<F>() const { \ | |||
return ::testing::internal::MakeAction<F>(impl_); \ | return ::testing::internal::MakeAction<F>(impl_); \ | |||
} \ | } \ | |||
private: \ | \ | |||
class gmock_Impl { \ | private: \ | |||
public: \ | class gmock_Impl { \ | |||
explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ | public: \ | |||
: GMOCK_ACTION_INIT_PARAMS_(params) {} \ | explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ | |||
template <typename function_type, typename return_type, \ | : GMOCK_ACTION_INIT_PARAMS_(params) {} \ | |||
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | template <typename function_type, typename return_type, \ | |||
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ | typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | |||
GMOCK_ACTION_FIELD_PARAMS_(params) \ | return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ | |||
}; \ | GMOCK_ACTION_FIELD_PARAMS_(params) \ | |||
std::shared_ptr<const gmock_Impl> impl_; \ | }; \ | |||
}; \ | std::shared_ptr<const gmock_Impl> impl_; \ | |||
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ | }; \ | |||
inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ | template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ | |||
GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ | inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ | |||
return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ | GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \ | |||
GMOCK_ACTION_GVALUE_PARAMS_(params)); \ | template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ | |||
} \ | inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ | |||
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ | GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ | |||
template <typename function_type, typename return_type, typename args_type, \ | return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ | |||
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | GMOCK_ACTION_GVALUE_PARAMS_(params)); \ | |||
return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \ | } \ | |||
gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const | template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ | |||
template <typename function_type, typename return_type, typename args_type, \ | ||||
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | ||||
return_type \ | ||||
full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \ | ||||
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const | ||||
} // namespace internal | } // namespace internal | |||
// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. | // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. | |||
#define ACTION(name) \ | #define ACTION(name) \ | |||
class name##Action { \ | class name##Action { \ | |||
public: \ | public: \ | |||
explicit name##Action() noexcept {} \ | explicit name##Action() noexcept {} \ | |||
name##Action(const name##Action&) noexcept {} \ | name##Action(const name##Action&) noexcept {} \ | |||
template <typename F> \ | template <typename F> \ | |||
operator ::testing::Action<F>() const { \ | operator ::testing::Action<F>() const { \ | |||
return ::testing::internal::MakeAction<F, gmock_Impl>(); \ | return ::testing::internal::MakeAction<F, gmock_Impl>(); \ | |||
} \ | } \ | |||
\ | ||||
private: \ | private: \ | |||
class gmock_Impl { \ | class gmock_Impl { \ | |||
public: \ | public: \ | |||
template <typename function_type, typename return_type, \ | template <typename function_type, typename return_type, \ | |||
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | |||
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ | return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ | |||
}; \ | }; \ | |||
}; \ | }; \ | |||
inline name##Action name() GTEST_MUST_USE_RESULT_; \ | inline name##Action name() GTEST_MUST_USE_RESULT_; \ | |||
inline name##Action name() { return name##Action(); } \ | inline name##Action name() { return name##Action(); } \ | |||
skipping to change at line 1683 | skipping to change at line 2295 | |||
#define ACTION_P9(name, ...) \ | #define ACTION_P9(name, ...) \ | |||
GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) | GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) | |||
#define ACTION_P10(name, ...) \ | #define ACTION_P10(name, ...) \ | |||
GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) | GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) | |||
} // namespace testing | } // namespace testing | |||
#ifdef _MSC_VER | #ifdef _MSC_VER | |||
# pragma warning(pop) | #pragma warning(pop) | |||
#endif | #endif | |||
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | |||
End of changes. 71 change blocks. | ||||
231 lines changed or deleted | 843 lines changed or added |