"Fossies" - the Fresh Open Source Software Archive  

Source code changes of the file "googlemock/include/gmock/gmock-actions.h" between
googletest-release-1.11.0.tar.gz and googletest-release-1.12.0.tar.gz

About: GoogleTest is Google's (unit) testing and mocking framework for C++ tests.

gmock-actions.h  (googletest-release-1.11.0):gmock-actions.h  (googletest-release-1.12.0)
skipping to change at line 127 skipping to change at line 127
// ACTION*() can only be used in a namespace scope as templates cannot be // ACTION*() can only be used in a namespace scope as templates cannot be
// declared inside of a local class. // declared inside of a local class.
// Users can, however, define any local functors (e.g. a lambda) that // Users can, however, define any local functors (e.g. a lambda) that
// can be used as actions. // can be used as actions.
// //
// MORE INFORMATION: // MORE INFORMATION:
// //
// To learn more about using these macros, please search for 'ACTION' on // To learn more about using these macros, please search for 'ACTION' on
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
// GOOGLETEST_CM0002 DO NOT DELETE // IWYU pragma: private, include "gmock/gmock.h"
// IWYU pragma: friend gmock/.*
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#ifndef _WIN32_WCE #ifndef _WIN32_WCE
# include <errno.h> #include <errno.h>
#endif #endif
#include <algorithm> #include <algorithm>
#include <functional> #include <functional>
#include <memory> #include <memory>
#include <string> #include <string>
#include <tuple> #include <tuple>
#include <type_traits> #include <type_traits>
#include <utility> #include <utility>
#include "gmock/internal/gmock-internal-utils.h" #include "gmock/internal/gmock-internal-utils.h"
#include "gmock/internal/gmock-port.h" #include "gmock/internal/gmock-port.h"
#include "gmock/internal/gmock-pp.h" #include "gmock/internal/gmock-pp.h"
#ifdef _MSC_VER #ifdef _MSC_VER
# pragma warning(push) #pragma warning(push)
# pragma warning(disable:4100) #pragma warning(disable : 4100)
#endif #endif
namespace testing { namespace testing {
// To implement an action Foo, define: // To implement an action Foo, define:
// 1. a class FooAction that implements the ActionInterface interface, and // 1. a class FooAction that implements the ActionInterface interface, and
// 2. a factory function that creates an Action object from a // 2. a factory function that creates an Action object from a
// const FooAction*. // const FooAction*.
// //
// The two-level delegation design follows that of Matcher, providing // The two-level delegation design follows that of Matcher, providing
skipping to change at line 198 skipping to change at line 199
// a numeric type, false when T is bool, or "" when T is string or // a numeric type, false when T is bool, or "" when T is string or
// std::string. In addition, in C++11 and above, it turns a // std::string. In addition, in C++11 and above, it turns a
// default-constructed T value if T is default constructible. For any // default-constructed T value if T is default constructible. For any
// other type T, the built-in default T value is undefined, and the // other type T, the built-in default T value is undefined, and the
// function will abort the process. // function will abort the process.
template <typename T> template <typename T>
class BuiltInDefaultValue { class BuiltInDefaultValue {
public: public:
// This function returns true if and only if type T has a built-in default // This function returns true if and only if type T has a built-in default
// value. // value.
static bool Exists() { static bool Exists() { return ::std::is_default_constructible<T>::value; }
return ::std::is_default_constructible<T>::value;
}
static T Get() { static T Get() {
return BuiltInDefaultValueGetter< return BuiltInDefaultValueGetter<
T, ::std::is_default_constructible<T>::value>::Get(); T, ::std::is_default_constructible<T>::value>::Get();
} }
}; };
// This partial specialization says that we use the same built-in // This partial specialization says that we use the same built-in
// default value for T and const T. // default value for T and const T.
template <typename T> template <typename T>
skipping to change at line 229 skipping to change at line 228
template <typename T> template <typename T>
class BuiltInDefaultValue<T*> { class BuiltInDefaultValue<T*> {
public: public:
static bool Exists() { return true; } static bool Exists() { return true; }
static T* Get() { return nullptr; } static T* Get() { return nullptr; }
}; };
// The following specializations define the default values for // The following specializations define the default values for
// specific types we care about. // specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
template <> \ template <> \
class BuiltInDefaultValue<type> { \ class BuiltInDefaultValue<type> { \
public: \ public: \
static bool Exists() { return true; } \ static bool Exists() { return true; } \
static type Get() { return value; } \ static type Get() { return value; } \
} }
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
// There's no need for a default action for signed wchar_t, as that // There's no need for a default action for signed wchar_t, as that
skipping to change at line 257 skipping to change at line 256
// that type is the same as unsigned int for gcc, and invalid for // that type is the same as unsigned int for gcc, and invalid for
// MSVC. // MSVC.
#if GMOCK_WCHAR_T_IS_NATIVE_ #if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
#endif #endif
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
// Simple two-arg form of std::disjunction. // Partial implementations of metaprogramming types from the standard library
template <typename P, typename Q> // not available in C++11.
using disjunction = typename ::std::conditional<P::value, P, Q>::type;
template <typename P>
struct negation
// NOLINTNEXTLINE
: std::integral_constant<bool, bool(!P::value)> {};
// Base case: with zero predicates the answer is always true.
template <typename...>
struct conjunction : std::true_type {};
// With a single predicate, the answer is that predicate.
template <typename P1>
struct conjunction<P1> : P1 {};
// With multiple predicates the answer is the first predicate if that is false,
// and we recurse otherwise.
template <typename P1, typename... Ps>
struct conjunction<P1, Ps...>
: std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
template <typename...>
struct disjunction : std::false_type {};
template <typename P1>
struct disjunction<P1> : P1 {};
template <typename P1, typename... Ps>
struct disjunction<P1, Ps...>
// NOLINTNEXTLINE
: std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
template <typename...>
using void_t = void;
// Detects whether an expression of type `From` can be implicitly converted to
// `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
//
// An expression e can be implicitly converted to a type T if and only if
// the declaration T t=e; is well-formed, for some invented temporary
// variable t ([dcl.init]).
//
// [conv]/2 implies we can use function argument passing to detect whether this
// initialization is valid.
//
// Note that this is distinct from is_convertible, which requires this be valid:
//
// To test() {
// return declval<From>();
// }
//
// In particular, is_convertible doesn't give the correct answer when `To` and
// `From` are the same non-moveable type since `declval<From>` will be an rvalue
// reference, defeating the guaranteed copy elision that would otherwise make
// this function work.
//
// REQUIRES: `From` is not cv void.
template <typename From, typename To>
struct is_implicitly_convertible {
private:
// A function that accepts a parameter of type T. This can be called with type
// U successfully only if U is implicitly convertible to T.
template <typename T>
static void Accept(T);
// A function that creates a value of type T.
template <typename T>
static T Make();
// An overload be selected when implicit conversion from T to To is possible.
template <typename T, typename = decltype(Accept<To>(Make<T>()))>
static std::true_type TestImplicitConversion(int);
// A fallback overload selected in all other cases.
template <typename T>
static std::false_type TestImplicitConversion(...);
public:
using type = decltype(TestImplicitConversion<From>(0));
static constexpr bool value = type::value;
};
// Like std::invoke_result_t from C++17, but works only for objects with call
// operators (not e.g. member function pointers, which we don't need specific
// support for in OnceAction because std::function deals with them).
template <typename F, typename... Args>
using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
template <typename Void, typename R, typename F, typename... Args>
struct is_callable_r_impl : std::false_type {};
// Specialize the struct for those template arguments where call_result_t is
// well-formed. When it's not, the generic template above is chosen, resulting
// in std::false_type.
template <typename R, typename F, typename... Args>
struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
: std::conditional<
std::is_void<R>::value, //
std::true_type, //
is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
// Like std::is_invocable_r from C++17, but works only for objects with call
// operators. See the note on call_result_t.
template <typename R, typename F, typename... Args>
using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
// Like std::as_const from C++17.
template <typename T>
typename std::add_const<T>::type& as_const(T& t) {
return t;
}
} // namespace internal } // namespace internal
// Specialized for function types below.
template <typename F>
class OnceAction;
// An action that can only be used once.
//
// This is accepted by WillOnce, which doesn't require the underlying action to
// be copy-constructible (only move-constructible), and promises to invoke it as
// an rvalue reference. This allows the action to work with move-only types like
// std::move_only_function in a type-safe manner.
//
// For example:
//
// // Assume we have some API that needs to accept a unique pointer to some
// // non-copyable object Foo.
// void AcceptUniquePointer(std::unique_ptr<Foo> foo);
//
// // We can define an action that provides a Foo to that API. Because It
// // has to give away its unique pointer, it must not be called more than
// // once, so its call operator is &&-qualified.
// struct ProvideFoo {
// std::unique_ptr<Foo> foo;
//
// void operator()() && {
// AcceptUniquePointer(std::move(Foo));
// }
// };
//
// // This action can be used with WillOnce.
// EXPECT_CALL(mock, Call)
// .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
//
// // But a call to WillRepeatedly will fail to compile. This is correct,
// // since the action cannot correctly be used repeatedly.
// EXPECT_CALL(mock, Call)
// .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
//
// A less-contrived example would be an action that returns an arbitrary type,
// whose &&-qualified call operator is capable of dealing with move-only types.
template <typename Result, typename... Args>
class OnceAction<Result(Args...)> final {
private:
// True iff we can use the given callable type (or lvalue reference) directly
// via StdFunctionAdaptor.
template <typename Callable>
using IsDirectlyCompatible = internal::conjunction<
// It must be possible to capture the callable in StdFunctionAdaptor.
std::is_constructible<typename std::decay<Callable>::type, Callable>,
// The callable must be compatible with our signature.
internal::is_callable_r<Result, typename std::decay<Callable>::type,
Args...>>;
// True iff we can use the given callable type via StdFunctionAdaptor once we
// ignore incoming arguments.
template <typename Callable>
using IsCompatibleAfterIgnoringArguments = internal::conjunction<
// It must be possible to capture the callable in a lambda.
std::is_constructible<typename std::decay<Callable>::type, Callable>,
// The callable must be invocable with zero arguments, returning something
// convertible to Result.
internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
public:
// Construct from a callable that is directly compatible with our mocked
// signature: it accepts our function type's arguments and returns something
// convertible to our result type.
template <typename Callable,
typename std::enable_if<
internal::conjunction<
// Teach clang on macOS that we're not talking about a
// copy/move constructor here. Otherwise it gets confused
// when checking the is_constructible requirement of our
// traits above.
internal::negation<std::is_same<
OnceAction, typename std::decay<Callable>::type>>,
IsDirectlyCompatible<Callable>> //
::value,
int>::type = 0>
OnceAction(Callable&& callable) // NOLINT
: function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
{}, std::forward<Callable>(callable))) {}
// As above, but for a callable that ignores the mocked function's arguments.
template <typename Callable,
typename std::enable_if<
internal::conjunction<
// Teach clang on macOS that we're not talking about a
// copy/move constructor here. Otherwise it gets confused
// when checking the is_constructible requirement of our
// traits above.
internal::negation<std::is_same<
OnceAction, typename std::decay<Callable>::type>>,
// Exclude callables for which the overload above works.
// We'd rather provide the arguments if possible.
internal::negation<IsDirectlyCompatible<Callable>>,
IsCompatibleAfterIgnoringArguments<Callable>>::value,
int>::type = 0>
OnceAction(Callable&& callable) // NOLINT
// Call the constructor above with a callable
// that ignores the input arguments.
: OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
std::forward<Callable>(callable)}) {}
// We are naturally copyable because we store only an std::function, but
// semantically we should not be copyable.
OnceAction(const OnceAction&) = delete;
OnceAction& operator=(const OnceAction&) = delete;
OnceAction(OnceAction&&) = default;
// Invoke the underlying action callable with which we were constructed,
// handing it the supplied arguments.
Result Call(Args... args) && {
return function_(std::forward<Args>(args)...);
}
private:
// An adaptor that wraps a callable that is compatible with our signature and
// being invoked as an rvalue reference so that it can be used as an
// StdFunctionAdaptor. This throws away type safety, but that's fine because
// this is only used by WillOnce, which we know calls at most once.
//
// Once we have something like std::move_only_function from C++23, we can do
// away with this.
template <typename Callable>
class StdFunctionAdaptor final {
public:
// A tag indicating that the (otherwise universal) constructor is accepting
// the callable itself, instead of e.g. stealing calls for the move
// constructor.
struct CallableTag final {};
template <typename F>
explicit StdFunctionAdaptor(CallableTag, F&& callable)
: callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
// Rather than explicitly returning Result, we return whatever the wrapped
// callable returns. This allows for compatibility with existing uses like
// the following, when the mocked function returns void:
//
// EXPECT_CALL(mock_fn_, Call)
// .WillOnce([&] {
// [...]
// return 0;
// });
//
// Such a callable can be turned into std::function<void()>. If we use an
// explicit return type of Result here then it *doesn't* work with
// std::function, because we'll get a "void function should not return a
// value" error.
//
// We need not worry about incompatible result types because the SFINAE on
// OnceAction already checks this for us. std::is_invocable_r_v itself makes
// the same allowance for void result types.
template <typename... ArgRefs>
internal::call_result_t<Callable, ArgRefs...> operator()(
ArgRefs&&... args) const {
return std::move(*callable_)(std::forward<ArgRefs>(args)...);
}
private:
// We must put the callable on the heap so that we are copyable, which
// std::function needs.
std::shared_ptr<Callable> callable_;
};
// An adaptor that makes a callable that accepts zero arguments callable with
// our mocked arguments.
template <typename Callable>
struct IgnoreIncomingArguments {
internal::call_result_t<Callable> operator()(Args&&...) {
return std::move(callable)();
}
Callable callable;
};
std::function<Result(Args...)> function_;
};
// When an unexpected function call is encountered, Google Mock will // When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its // let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value; // return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have // otherwise Google Mock won't know what value to return and will have
// to abort the process. // to abort the process.
// //
// The DefaultValue<T> class allows a user to specify the // The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly // default value for a type T that is both copyable and publicly
// destructible (i.e. anything that can be used as a function return // destructible (i.e. anything that can be used as a function return
// type). The usage is: // type). The usage is:
skipping to change at line 341 skipping to change at line 628
virtual T Produce() = 0; virtual T Produce() = 0;
}; };
class FixedValueProducer : public ValueProducer { class FixedValueProducer : public ValueProducer {
public: public:
explicit FixedValueProducer(T value) : value_(value) {} explicit FixedValueProducer(T value) : value_(value) {}
T Produce() override { return value_; } T Produce() override { return value_; }
private: private:
const T value_; const T value_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); FixedValueProducer(const FixedValueProducer&) = delete;
FixedValueProducer& operator=(const FixedValueProducer&) = delete;
}; };
class FactoryValueProducer : public ValueProducer { class FactoryValueProducer : public ValueProducer {
public: public:
explicit FactoryValueProducer(FactoryFunction factory) explicit FactoryValueProducer(FactoryFunction factory)
: factory_(factory) {} : factory_(factory) {}
T Produce() override { return factory_(); } T Produce() override { return factory_(); }
private: private:
const FactoryFunction factory_; const FactoryFunction factory_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); FactoryValueProducer(const FactoryValueProducer&) = delete;
FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
}; };
static ValueProducer* producer_; static ValueProducer* producer_;
}; };
// This partial specialization allows a user to set default values for // This partial specialization allows a user to set default values for
// reference types. // reference types.
template <typename T> template <typename T>
class DefaultValue<T&> { class DefaultValue<T&> {
public: public:
skipping to change at line 426 skipping to change at line 715
ActionInterface() {} ActionInterface() {}
virtual ~ActionInterface() {} virtual ~ActionInterface() {}
// Performs the action. This method is not const, as in general an // Performs the action. This method is not const, as in general an
// action can have side effects and be stateful. For example, a // action can have side effects and be stateful. For example, a
// get-the-next-element-from-the-collection action will need to // get-the-next-element-from-the-collection action will need to
// remember the current element. // remember the current element.
virtual Result Perform(const ArgumentTuple& args) = 0; virtual Result Perform(const ArgumentTuple& args) = 0;
private: private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); ActionInterface(const ActionInterface&) = delete;
ActionInterface& operator=(const ActionInterface&) = delete;
}; };
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function
// of type F is called. The implementation of Action<T> is just a
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
// You can view an object implementing ActionInterface<F> as a
// concrete action (including its current state), and an Action<F>
// object as a handle to it.
template <typename F> template <typename F>
class Action { class Action;
// An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function of type
// R(Args...) is called. The implementation of Action<T> is just a
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
// can view an object implementing ActionInterface<F> as a concrete action
// (including its current state), and an Action<F> object as a handle to it.
template <typename R, typename... Args>
class Action<R(Args...)> {
private:
using F = R(Args...);
// Adapter class to allow constructing Action from a legacy ActionInterface. // Adapter class to allow constructing Action from a legacy ActionInterface.
// New code should create Actions from functors instead. // New code should create Actions from functors instead.
struct ActionAdapter { struct ActionAdapter {
// Adapter must be copyable to satisfy std::function requirements. // Adapter must be copyable to satisfy std::function requirements.
::std::shared_ptr<ActionInterface<F>> impl_; ::std::shared_ptr<ActionInterface<F>> impl_;
template <typename... Args> template <typename... InArgs>
typename internal::Function<F>::Result operator()(Args&&... args) { typename internal::Function<F>::Result operator()(InArgs&&... args) {
return impl_->Perform( return impl_->Perform(
::std::forward_as_tuple(::std::forward<Args>(args)...)); ::std::forward_as_tuple(::std::forward<InArgs>(args)...));
} }
}; };
template <typename G> template <typename G>
using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
public: public:
typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
skipping to change at line 482 skipping to change at line 777
} }
// Constructs an Action from its implementation. // Constructs an Action from its implementation.
explicit Action(ActionInterface<F>* impl) explicit Action(ActionInterface<F>* impl)
: fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
// This constructor allows us to turn an Action<Func> object into an // This constructor allows us to turn an Action<Func> object into an
// Action<F>, as long as F's arguments can be implicitly converted // Action<F>, as long as F's arguments can be implicitly converted
// to Func's and Func's return type can be implicitly converted to F's. // to Func's and Func's return type can be implicitly converted to F's.
template <typename Func> template <typename Func>
explicit Action(const Action<Func>& action) : fun_(action.fun_) {} Action(const Action<Func>& action) // NOLINT
: fun_(action.fun_) {}
// Returns true if and only if this is the DoDefault() action. // Returns true if and only if this is the DoDefault() action.
bool IsDoDefault() const { return fun_ == nullptr; } bool IsDoDefault() const { return fun_ == nullptr; }
// Performs the action. Note that this method is const even though // Performs the action. Note that this method is const even though
// the corresponding method in ActionInterface is not. The reason // the corresponding method in ActionInterface is not. The reason
// is that a const Action<F> means that it cannot be re-bound to // is that a const Action<F> means that it cannot be re-bound to
// another concrete action, not that the concrete action it binds to // another concrete action, not that the concrete action it binds to
// cannot change state. (Think of the difference between a const // cannot change state. (Think of the difference between a const
// pointer and a pointer to const.) // pointer and a pointer to const.)
Result Perform(ArgumentTuple args) const { Result Perform(ArgumentTuple args) const {
if (IsDoDefault()) { if (IsDoDefault()) {
internal::IllegalDoDefault(__FILE__, __LINE__); internal::IllegalDoDefault(__FILE__, __LINE__);
} }
return internal::Apply(fun_, ::std::move(args)); return internal::Apply(fun_, ::std::move(args));
} }
// An action can be used as a OnceAction, since it's obviously safe to call it
// once.
operator OnceAction<F>() const { // NOLINT
// Return a OnceAction-compatible callable that calls Perform with the
// arguments it is provided. We could instead just return fun_, but then
// we'd need to handle the IsDoDefault() case separately.
struct OA {
Action<F> action;
R operator()(Args... args) && {
return action.Perform(
std::forward_as_tuple(std::forward<Args>(args)...));
}
};
return OA{*this};
}
private: private:
template <typename G> template <typename G>
friend class Action; friend class Action;
template <typename G> template <typename G>
void Init(G&& g, ::std::true_type) { void Init(G&& g, ::std::true_type) {
fun_ = ::std::forward<G>(g); fun_ = ::std::forward<G>(g);
} }
template <typename G> template <typename G>
void Init(G&& g, ::std::false_type) { void Init(G&& g, ::std::false_type) {
fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
} }
template <typename FunctionImpl> template <typename FunctionImpl>
struct IgnoreArgs { struct IgnoreArgs {
template <typename... Args> template <typename... InArgs>
Result operator()(const Args&...) const { Result operator()(const InArgs&...) const {
return function_impl(); return function_impl();
} }
FunctionImpl function_impl; FunctionImpl function_impl;
}; };
// fun_ is an empty function if and only if this is the DoDefault() action. // fun_ is an empty function if and only if this is the DoDefault() action.
::std::function<F> fun_; ::std::function<F> fun_;
}; };
skipping to change at line 608 skipping to change at line 922
namespace internal { namespace internal {
// Helper struct to specialize ReturnAction to execute a move instead of a copy // Helper struct to specialize ReturnAction to execute a move instead of a copy
// on return. Useful for move-only types, but could be used on any type. // on return. Useful for move-only types, but could be used on any type.
template <typename T> template <typename T>
struct ByMoveWrapper { struct ByMoveWrapper {
explicit ByMoveWrapper(T value) : payload(std::move(value)) {} explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
T payload; T payload;
}; };
// Implements the polymorphic Return(x) action, which can be used in // The general implementation of Return(R). Specializations follow below.
// any function that returns the type of x, regardless of the argument
// types.
//
// Note: The value passed into Return must be converted into
// Function<F>::Result when this action is cast to Action<F> rather than
// when that action is performed. This is important in scenarios like
//
// MOCK_METHOD1(Method, T(U));
// ...
// {
// Foo foo;
// X x(&foo);
// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
// }
//
// In the example above the variable x holds reference to foo which leaves
// scope and gets destroyed. If copying X just copies a reference to foo,
// that copy will be left with a hanging reference. If conversion to T
// makes a copy of foo, the above code is safe. To support that scenario, we
// need to make sure that the type conversion happens inside the EXPECT_CALL
// statement, and conversion of the result of Return to Action<T(U)> is a
// good place for that.
//
// The real life example of the above scenario happens when an invocation
// of gtl::Container() is passed into Return.
//
template <typename R> template <typename R>
class ReturnAction { class ReturnAction final {
public: public:
// Constructs a ReturnAction object from the value to be returned. explicit ReturnAction(R value) : value_(std::move(value)) {}
// 'value' is passed by value instead of by const reference in order
// to allow Return("string literal") to compile.
explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
// This template type conversion operator allows Return(x) to be template <typename U, typename... Args,
// used in ANY function that returns x's type. typename = typename std::enable_if<conjunction<
template <typename F> // See the requirements documented on Return.
operator Action<F>() const { // NOLINT negation<std::is_same<void, U>>, //
// Assert statement belongs here because this is the best place to verify negation<std::is_reference<U>>, //
// conditions on F. It produces the clearest error messages std::is_convertible<R, U>, //
// in most compilers. std::is_move_constructible<U>>::value>::type>
// Impl really belongs in this scope as a local class but can't operator OnceAction<U(Args...)>() && { // NOLINT
// because MSVC produces duplicate symbols in different translation units return Impl<U>(std::move(value_));
// in this case. Until MS fixes that bug we put Impl into the class scope }
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same. template <typename U, typename... Args,
typedef typename Function<F>::Result Result; typename = typename std::enable_if<conjunction<
GTEST_COMPILE_ASSERT_( // See the requirements documented on Return.
!std::is_reference<Result>::value, negation<std::is_same<void, U>>, //
use_ReturnRef_instead_of_Return_to_return_a_reference); negation<std::is_reference<U>>, //
static_assert(!std::is_void<Result>::value, std::is_convertible<const R&, U>, //
"Can't use Return() on an action expected to return `void`."); std::is_copy_constructible<U>>::value>::type>
return Action<F>(new Impl<R, F>(value_)); operator Action<U(Args...)>() const { // NOLINT
return Impl<U>(value_);
} }
private: private:
// Implements the Return(x) action for a particular function type F. // Implements the Return(x) action for a mock function that returns type U.
template <typename R_, typename F> template <typename U>
class Impl : public ActionInterface<F> { class Impl final {
public: public:
typedef typename Function<F>::Result Result; // The constructor used when the return value is allowed to move from the
typedef typename Function<F>::ArgumentTuple ArgumentTuple; // input value (i.e. we are converting to OnceAction).
explicit Impl(R&& input_value)
: state_(new State(std::move(input_value))) {}
// The constructor used when the return value is not allowed to move from
// the input value (i.e. we are converting to Action).
explicit Impl(const R& input_value) : state_(new State(input_value)) {}
// The implicit cast is necessary when Result has more than one U operator()() && { return std::move(state_->value); }
// single-argument constructor (e.g. Result is std::vector<int>) and R U operator()() const& { return state_->value; }
// has a type conversion operator template. In that case, value_(value)
// won't compile as the compiler doesn't known which constructor of
// Result to call. ImplicitCast_ forces the compiler to convert R to
// Result without considering explicit constructors, thus resolving the
// ambiguity. value_ is then initialized using its copy constructor.
explicit Impl(const std::shared_ptr<R>& value)
: value_before_cast_(*value),
value_(ImplicitCast_<Result>(value_before_cast_)) {}
Result Perform(const ArgumentTuple&) override { return value_; }
private: private:
GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value, // We put our state on the heap so that the compiler-generated copy/move
Result_cannot_be_a_reference_type); // constructors work correctly even when U is a reference-like type. This is
// We save the value before casting just in case it is being cast to a // necessary only because we eagerly create State::value (see the note on
// wrapper type. // that symbol for details). If we instead had only the input value as a
R value_before_cast_; // member then the default constructors would work fine.
Result value_; //
// For example, when R is std::string and U is std::string_view, value is a
// reference to the string backed by input_value. The copy constructor would
// copy both, so that we wind up with a new input_value object (with the
// same contents) and a reference to the *old* input_value object rather
// than the new one.
struct State {
explicit State(const R& input_value_in)
: input_value(input_value_in),
// Make an implicit conversion to Result before initializing the U
// object we store, avoiding calling any explicit constructor of U
// from R.
//
// This simulates the language rules: a function with return type U
// that does `return R()` requires R to be implicitly convertible to
// U, and uses that path for the conversion, even U Result has an
// explicit constructor from R.
value(ImplicitCast_<U>(internal::as_const(input_value))) {}
// As above, but for the case where we're moving from the ReturnAction
// object because it's being used as a OnceAction.
explicit State(R&& input_value_in)
: input_value(std::move(input_value_in)),
// For the same reason as above we make an implicit conversion to U
// before initializing the value.
//
// Unlike above we provide the input value as an rvalue to the
// implicit conversion because this is a OnceAction: it's fine if it
// wants to consume the input value.
value(ImplicitCast_<U>(std::move(input_value))) {}
// A copy of the value originally provided by the user. We retain this in
// addition to the value of the mock function's result type below in case
// the latter is a reference-like type. See the std::string_view example
// in the documentation on Return.
R input_value;
// The value we actually return, as the type returned by the mock function
// itself.
//
// We eagerly initialize this here, rather than lazily doing the implicit
// conversion automatically each time Perform is called, for historical
// reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
// made the Action<U()> conversion operator eagerly convert the R value to
// U, but without keeping the R alive. This broke the use case discussed
// in the documentation for Return, making reference-like types such as
// std::string_view not safe to use as U where the input type R is a
// value-like type such as std::string.
//
// The example the commit gave was not very clear, nor was the issue
// thread (https://github.com/google/googlemock/issues/86), but it seems
// the worry was about reference-like input types R that flatten to a
// value-like type U when being implicitly converted. An example of this
// is std::vector<bool>::reference, which is often a proxy type with an
// reference to the underlying vector:
//
// // Helper method: have the mock function return bools according
// // to the supplied script.
// void SetActions(MockFunction<bool(size_t)>& mock,
// const std::vector<bool>& script) {
// for (size_t i = 0; i < script.size(); ++i) {
// EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
// }
// }
//
// TEST(Foo, Bar) {
// // Set actions using a temporary vector, whose operator[]
// // returns proxy objects that references that will be
// // dangling once the call to SetActions finishes and the
// // vector is destroyed.
// MockFunction<bool(size_t)> mock;
// SetActions(mock, {false, true});
//
// EXPECT_FALSE(mock.AsStdFunction()(0));
// EXPECT_TRUE(mock.AsStdFunction()(1));
// }
//
// This eager conversion helps with a simple case like this, but doesn't
// fully make these types work in general. For example the following still
// uses a dangling reference:
//
// TEST(Foo, Baz) {
// MockFunction<std::vector<std::string>()> mock;
//
// // Return the same vector twice, and then the empty vector
// // thereafter.
// auto action = Return(std::initializer_list<std::string>{
// "taco", "burrito",
// });
//
// EXPECT_CALL(mock, Call)
// .WillOnce(action)
// .WillOnce(action)
// .WillRepeatedly(Return(std::vector<std::string>{}));
//
// EXPECT_THAT(mock.AsStdFunction()(),
// ElementsAre("taco", "burrito"));
// EXPECT_THAT(mock.AsStdFunction()(),
// ElementsAre("taco", "burrito"));
// EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
// }
//
U value;
};
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); const std::shared_ptr<State> state_;
}; };
// Partially specialize for ByMoveWrapper. This version of ReturnAction will R value_;
// move its contents instead. };
template <typename R_, typename F>
class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const std::shared_ptr<R>& wrapper) // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
: performed_(false), wrapper_(wrapper) {} //
// This version applies the type system-defeating hack of moving from T even in
// the const call operator, checking at runtime that it isn't called more than
// once, since the user has declared their intent to do so by using ByMove.
template <typename T>
class ReturnAction<ByMoveWrapper<T>> final {
public:
explicit ReturnAction(ByMoveWrapper<T> wrapper)
: state_(new State(std::move(wrapper.payload))) {}
Result Perform(const ArgumentTuple&) override { T operator()() const {
GTEST_CHECK_(!performed_) GTEST_CHECK_(!state_->called)
<< "A ByMove() action should only be performed once."; << "A ByMove() action must be performed at most once.";
performed_ = true;
return std::move(wrapper_->payload);
}
private: state_->called = true;
bool performed_; return std::move(state_->value);
const std::shared_ptr<R> wrapper_; }
private:
// We store our state on the heap so that we are copyable as required by
// Action, despite the fact that we are stateful and T may not be copyable.
struct State {
explicit State(T&& value_in) : value(std::move(value_in)) {}
T value;
bool called = false;
}; };
const std::shared_ptr<R> value_; const std::shared_ptr<State> state_;
}; };
// Implements the ReturnNull() action. // Implements the ReturnNull() action.
class ReturnNullAction { class ReturnNullAction {
public: public:
// Allows ReturnNull() to be used in any pointer-returning function. In C++11 // Allows ReturnNull() to be used in any pointer-returning function. In C++11
// this is enforced by returning nullptr, and in non-C++11 by asserting a // this is enforced by returning nullptr, and in non-C++11 by asserting a
// pointer type on compile time. // pointer type on compile time.
template <typename Result, typename ArgumentTuple> template <typename Result, typename ArgumentTuple>
static Result Perform(const ArgumentTuple&) { static Result Perform(const ArgumentTuple&) {
skipping to change at line 761 skipping to change at line 1155
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
// This template type conversion operator allows ReturnRef(x) to be // This template type conversion operator allows ReturnRef(x) to be
// used in ANY function that returns a reference to x's type. // used in ANY function that returns a reference to x's type.
template <typename F> template <typename F>
operator Action<F>() const { operator Action<F>() const {
typedef typename Function<F>::Result Result; typedef typename Function<F>::Result Result;
// Asserts that the function return type is a reference. This // Asserts that the function return type is a reference. This
// catches the user error of using ReturnRef(x) when Return(x) // catches the user error of using ReturnRef(x) when Return(x)
// should be used, and generates some helpful error message. // should be used, and generates some helpful error message.
GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value, static_assert(std::is_reference<Result>::value,
use_Return_instead_of_ReturnRef_to_return_a_value); "use Return instead of ReturnRef to return a value");
return Action<F>(new Impl<F>(ref_)); return Action<F>(new Impl<F>(ref_));
} }
private: private:
// Implements the ReturnRef(x) action for a particular function type F. // Implements the ReturnRef(x) action for a particular function type F.
template <typename F> template <typename F>
class Impl : public ActionInterface<F> { class Impl : public ActionInterface<F> {
public: public:
typedef typename Function<F>::Result Result; typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple; typedef typename Function<F>::ArgumentTuple ArgumentTuple;
skipping to change at line 803 skipping to change at line 1197
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
// This template type conversion operator allows ReturnRefOfCopy(x) to be // This template type conversion operator allows ReturnRefOfCopy(x) to be
// used in ANY function that returns a reference to x's type. // used in ANY function that returns a reference to x's type.
template <typename F> template <typename F>
operator Action<F>() const { operator Action<F>() const {
typedef typename Function<F>::Result Result; typedef typename Function<F>::Result Result;
// Asserts that the function return type is a reference. This // Asserts that the function return type is a reference. This
// catches the user error of using ReturnRefOfCopy(x) when Return(x) // catches the user error of using ReturnRefOfCopy(x) when Return(x)
// should be used, and generates some helpful error message. // should be used, and generates some helpful error message.
GTEST_COMPILE_ASSERT_( static_assert(std::is_reference<Result>::value,
std::is_reference<Result>::value, "use Return instead of ReturnRefOfCopy to return a value");
use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
return Action<F>(new Impl<F>(value_)); return Action<F>(new Impl<F>(value_));
} }
private: private:
// Implements the ReturnRefOfCopy(x) action for a particular function type F. // Implements the ReturnRefOfCopy(x) action for a particular function type F.
template <typename F> template <typename F>
class Impl : public ActionInterface<F> { class Impl : public ActionInterface<F> {
public: public:
typedef typename Function<F>::Result Result; typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple; typedef typename Function<F>::ArgumentTuple ArgumentTuple;
skipping to change at line 841 skipping to change at line 1234
class ReturnRoundRobinAction { class ReturnRoundRobinAction {
public: public:
explicit ReturnRoundRobinAction(std::vector<T> values) { explicit ReturnRoundRobinAction(std::vector<T> values) {
GTEST_CHECK_(!values.empty()) GTEST_CHECK_(!values.empty())
<< "ReturnRoundRobin requires at least one element."; << "ReturnRoundRobin requires at least one element.";
state_->values = std::move(values); state_->values = std::move(values);
} }
template <typename... Args> template <typename... Args>
T operator()(Args&&...) const { T operator()(Args&&...) const {
return state_->Next(); return state_->Next();
} }
private: private:
struct State { struct State {
T Next() { T Next() {
T ret_val = values[i++]; T ret_val = values[i++];
if (i == values.size()) i = 0; if (i == values.size()) i = 0;
return ret_val; return ret_val;
} }
skipping to change at line 864 skipping to change at line 1257
}; };
std::shared_ptr<State> state_ = std::make_shared<State>(); std::shared_ptr<State> state_ = std::make_shared<State>();
}; };
// Implements the polymorphic DoDefault() action. // Implements the polymorphic DoDefault() action.
class DoDefaultAction { class DoDefaultAction {
public: public:
// This template type conversion operator allows DoDefault() to be // This template type conversion operator allows DoDefault() to be
// used in any function. // used in any function.
template <typename F> template <typename F>
operator Action<F>() const { return Action<F>(); } // NOLINT operator Action<F>() const {
return Action<F>();
} // NOLINT
}; };
// Implements the Assign action to set a given pointer referent to a // Implements the Assign action to set a given pointer referent to a
// particular value. // particular value.
template <typename T1, typename T2> template <typename T1, typename T2>
class AssignAction { class AssignAction {
public: public:
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
template <typename Result, typename ArgumentTuple> template <typename Result, typename ArgumentTuple>
skipping to change at line 892 skipping to change at line 1287
}; };
#if !GTEST_OS_WINDOWS_MOBILE #if !GTEST_OS_WINDOWS_MOBILE
// Implements the SetErrnoAndReturn action to simulate return from // Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions. // various system calls and libc functions.
template <typename T> template <typename T>
class SetErrnoAndReturnAction { class SetErrnoAndReturnAction {
public: public:
SetErrnoAndReturnAction(int errno_value, T result) SetErrnoAndReturnAction(int errno_value, T result)
: errno_(errno_value), : errno_(errno_value), result_(result) {}
result_(result) {}
template <typename Result, typename ArgumentTuple> template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) const { Result Perform(const ArgumentTuple& /* args */) const {
errno = errno_; errno = errno_;
return result_; return result_;
} }
private: private:
const int errno_; const int errno_;
const T result_; const T result_;
}; };
skipping to change at line 1004 skipping to change at line 1398
explicit Impl(const A& action) : action_(action) {} explicit Impl(const A& action) : action_(action) {}
void Perform(const ArgumentTuple& args) override { void Perform(const ArgumentTuple& args) override {
// Performs the action and ignores its result. // Performs the action and ignores its result.
action_.Perform(args); action_.Perform(args);
} }
private: private:
// Type OriginalFunction is the same as F except that its return // Type OriginalFunction is the same as F except that its return
// type is IgnoredValue. // type is IgnoredValue.
typedef typename internal::Function<F>::MakeResultIgnoredValue typedef
OriginalFunction; typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
const Action<OriginalFunction> action_; const Action<OriginalFunction> action_;
}; };
const A action_; const A action_;
}; };
template <typename InnerAction, size_t... I> template <typename InnerAction, size_t... I>
struct WithArgsAction { struct WithArgsAction {
InnerAction action; InnerAction inner_action;
// The inner action could be anything convertible to Action<X>. // The signature of the function as seen by the inner action, given an out
// We use the conversion operator to detect the signature of the inner Action. // action with the given result and argument types.
template <typename R, typename... Args> template <typename R, typename... Args>
using InnerSignature =
R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
// Rather than a call operator, we must define conversion operators to
// particular action types. This is necessary for embedded actions like
// DoDefault(), which rely on an action conversion operators rather than
// providing a call operator because even with a particular set of arguments
// they don't have a fixed return type.
template <typename R, typename... Args,
typename std::enable_if<
std::is_convertible<
InnerAction,
// Unfortunately we can't use the InnerSignature alias here;
// MSVC complains about the I parameter pack not being
// expanded (error C3520) despite it being expanded in the
// type alias.
OnceAction<R(typename std::tuple_element<
I, std::tuple<Args...>>::type...)>>::value,
int>::type = 0>
operator OnceAction<R(Args...)>() && { // NOLINT
struct OA {
OnceAction<InnerSignature<R, Args...>> inner_action;
R operator()(Args&&... args) && {
return std::move(inner_action)
.Call(std::get<I>(
std::forward_as_tuple(std::forward<Args>(args)...))...);
}
};
return OA{std::move(inner_action)};
}
template <typename R, typename... Args,
typename std::enable_if<
std::is_convertible<
const InnerAction&,
// Unfortunately we can't use the InnerSignature alias here;
// MSVC complains about the I parameter pack not being
// expanded (error C3520) despite it being expanded in the
// type alias.
Action<R(typename std::tuple_element<
I, std::tuple<Args...>>::type...)>>::value,
int>::type = 0>
operator Action<R(Args...)>() const { // NOLINT operator Action<R(Args...)>() const { // NOLINT
using TupleType = std::tuple<Args...>; Action<InnerSignature<R, Args...>> converted(inner_action);
Action<R(typename std::tuple_element<I, TupleType>::type...)>
converted(action);
return [converted](Args... args) -> R { return [converted](Args&&... args) -> R {
return converted.Perform(std::forward_as_tuple( return converted.Perform(std::forward_as_tuple(
std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
}; };
} }
}; };
template <typename... Actions> template <typename... Actions>
struct DoAllAction { class DoAllAction;
private:
// Base case: only a single action.
template <typename FinalAction>
class DoAllAction<FinalAction> {
public:
struct UserConstructorTag {};
template <typename T> template <typename T>
using NonFinalType = explicit DoAllAction(UserConstructorTag, T&& action)
typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; : final_action_(std::forward<T>(action)) {}
template <typename ActionT, size_t... I> // Rather than a call operator, we must define conversion operators to
std::vector<ActionT> Convert(IndexSequence<I...>) const { // particular action types. This is necessary for embedded actions like
return {ActionT(std::get<I>(actions))...}; // DoDefault(), which rely on an action conversion operators rather than
// providing a call operator because even with a particular set of arguments
// they don't have a fixed return type.
template <typename R, typename... Args,
typename std::enable_if<
std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
int>::type = 0>
operator OnceAction<R(Args...)>() && { // NOLINT
return std::move(final_action_);
} }
template <
typename R, typename... Args,
typename std::enable_if<
std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
int>::type = 0>
operator Action<R(Args...)>() const { // NOLINT
return final_action_;
}
private:
FinalAction final_action_;
};
// Recursive case: support N actions by calling the initial action and then
// calling through to the base class containing N-1 actions.
template <typename InitialAction, typename... OtherActions>
class DoAllAction<InitialAction, OtherActions...>
: private DoAllAction<OtherActions...> {
private:
using Base = DoAllAction<OtherActions...>;
// The type of reference that should be provided to an initial action for a
// mocked function parameter of type T.
//
// There are two quirks here:
//
// * Unlike most forwarding functions, we pass scalars through by value.
// This isn't strictly necessary because an lvalue reference would work
// fine too and be consistent with other non-reference types, but it's
// perhaps less surprising.
//
// For example if the mocked function has signature void(int), then it
// might seem surprising for the user's initial action to need to be
// convertible to Action<void(const int&)>. This is perhaps less
// surprising for a non-scalar type where there may be a performance
// impact, or it might even be impossible, to pass by value.
//
// * More surprisingly, `const T&` is often not a const reference type.
// By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
// U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
// U&. In other words, we may hand over a non-const reference.
//
// So for example, given some non-scalar type Obj we have the following
// mappings:
//
// T InitialActionArgType<T>
// ------- -----------------------
// Obj const Obj&
// Obj& Obj&
// Obj&& Obj&
// const Obj const Obj&
// const Obj& const Obj&
// const Obj&& const Obj&
//
// In other words, the initial actions get a mutable view of an non-scalar
// argument if and only if the mock function itself accepts a non-const
// reference type. They are never given an rvalue reference to an
// non-scalar type.
//
// This situation makes sense if you imagine use with a matcher that is
// designed to write through a reference. For example, if the caller wants
// to fill in a reference argument and then return a canned value:
//
// EXPECT_CALL(mock, Call)
// .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
//
template <typename T>
using InitialActionArgType =
typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
public: public:
std::tuple<Actions...> actions; struct UserConstructorTag {};
template <typename R, typename... Args> template <typename T, typename... U>
explicit DoAllAction(UserConstructorTag, T&& initial_action,
U&&... other_actions)
: Base({}, std::forward<U>(other_actions)...),
initial_action_(std::forward<T>(initial_action)) {}
template <typename R, typename... Args,
typename std::enable_if<
conjunction<
// Both the initial action and the rest must support
// conversion to OnceAction.
std::is_convertible<
InitialAction,
OnceAction<void(InitialActionArgType<Args>...)>>,
std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
int>::type = 0>
operator OnceAction<R(Args...)>() && { // NOLINT
// Return an action that first calls the initial action with arguments
// filtered through InitialActionArgType, then forwards arguments directly
// to the base class to deal with the remaining actions.
struct OA {
OnceAction<void(InitialActionArgType<Args>...)> initial_action;
OnceAction<R(Args...)> remaining_actions;
R operator()(Args... args) && {
std::move(initial_action)
.Call(static_cast<InitialActionArgType<Args>>(args)...);
return std::move(remaining_actions).Call(std::forward<Args>(args)...);
}
};
return OA{
std::move(initial_action_),
std::move(static_cast<Base&>(*this)),
};
}
template <
typename R, typename... Args,
typename std::enable_if<
conjunction<
// Both the initial action and the rest must support conversion to
// Action.
std::is_convertible<const InitialAction&,
Action<void(InitialActionArgType<Args>...)>>,
std::is_convertible<const Base&, Action<R(Args...)>>>::value,
int>::type = 0>
operator Action<R(Args...)>() const { // NOLINT operator Action<R(Args...)>() const { // NOLINT
struct Op { // Return an action that first calls the initial action with arguments
std::vector<Action<void(NonFinalType<Args>...)>> converted; // filtered through InitialActionArgType, then forwards arguments directly
Action<R(Args...)> last; // to the base class to deal with the remaining actions.
struct OA {
Action<void(InitialActionArgType<Args>...)> initial_action;
Action<R(Args...)> remaining_actions;
R operator()(Args... args) const { R operator()(Args... args) const {
auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...); initial_action.Perform(std::forward_as_tuple(
for (auto& a : converted) { static_cast<InitialActionArgType<Args>>(args)...));
a.Perform(tuple_args);
} return remaining_actions.Perform(
return last.Perform(std::move(tuple_args)); std::forward_as_tuple(std::forward<Args>(args)...));
} }
}; };
return Op{Convert<Action<void(NonFinalType<Args>...)>>(
MakeIndexSequence<sizeof...(Actions) - 1>()), return OA{
std::get<sizeof...(Actions) - 1>(actions)}; initial_action_,
static_cast<const Base&>(*this),
};
} }
private:
InitialAction initial_action_;
}; };
template <typename T, typename... Params> template <typename T, typename... Params>
struct ReturnNewAction { struct ReturnNewAction {
T* operator()() const { T* operator()() const {
return internal::Apply( return internal::Apply(
[](const Params&... unpacked_params) { [](const Params&... unpacked_params) {
return new T(unpacked_params...); return new T(unpacked_params...);
}, },
params); params);
} }
std::tuple<Params...> params; std::tuple<Params...> params;
}; };
template <size_t k> template <size_t k>
struct ReturnArgAction { struct ReturnArgAction {
template <typename... Args> template <typename... Args,
auto operator()(const Args&... args) const -> typename = typename std::enable_if<(k < sizeof...(Args))>::type>
typename std::tuple_element<k, std::tuple<Args...>>::type { auto operator()(Args&&... args) const -> decltype(std::get<k>(
return std::get<k>(std::tie(args...)); std::forward_as_tuple(std::forward<Args>(args)...))) {
return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
} }
}; };
template <size_t k, typename Ptr> template <size_t k, typename Ptr>
struct SaveArgAction { struct SaveArgAction {
Ptr pointer; Ptr pointer;
template <typename... Args> template <typename... Args>
void operator()(const Args&... args) const { void operator()(const Args&... args) const {
*pointer = std::get<k>(std::tie(args...)); *pointer = std::get<k>(std::tie(args...));
skipping to change at line 1205 skipping to change at line 1784
// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
typedef internal::IgnoredValue Unused; typedef internal::IgnoredValue Unused;
// Creates an action that does actions a1, a2, ..., sequentially in // Creates an action that does actions a1, a2, ..., sequentially in
// each invocation. All but the last action will have a readonly view of the // each invocation. All but the last action will have a readonly view of the
// arguments. // arguments.
template <typename... Action> template <typename... Action>
internal::DoAllAction<typename std::decay<Action>::type...> DoAll( internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
Action&&... action) { Action&&... action) {
return {std::forward_as_tuple(std::forward<Action>(action)...)}; return internal::DoAllAction<typename std::decay<Action>::type...>(
{}, std::forward<Action>(action)...);
} }
// WithArg<k>(an_action) creates an action that passes the k-th // WithArg<k>(an_action) creates an action that passes the k-th
// (0-based) argument of the mock function to an_action and performs // (0-based) argument of the mock function to an_action and performs
// it. It adapts an action accepting one argument to one that accepts // it. It adapts an action accepting one argument to one that accepts
// multiple arguments. For convenience, we also provide // multiple arguments. For convenience, we also provide
// WithArgs<k>(an_action) (defined below) as a synonym. // WithArgs<k>(an_action) (defined below) as a synonym.
template <size_t k, typename InnerAction> template <size_t k, typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type, k> internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
WithArg(InnerAction&& action) { InnerAction&& action) {
return {std::forward<InnerAction>(action)}; return {std::forward<InnerAction>(action)};
} }
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
// the selected arguments of the mock function to an_action and // the selected arguments of the mock function to an_action and
// performs it. It serves as an adaptor between actions with // performs it. It serves as an adaptor between actions with
// different argument lists. // different argument lists.
template <size_t k, size_t... ks, typename InnerAction> template <size_t k, size_t... ks, typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
WithArgs(InnerAction&& action) { WithArgs(InnerAction&& action) {
return {std::forward<InnerAction>(action)}; return {std::forward<InnerAction>(action)};
} }
// WithoutArgs(inner_action) can be used in a mock function with a // WithoutArgs(inner_action) can be used in a mock function with a
// non-empty argument list to perform inner_action, which takes no // non-empty argument list to perform inner_action, which takes no
// argument. In other words, it adapts an action accepting no // argument. In other words, it adapts an action accepting no
// argument to one that accepts (and ignores) arguments. // argument to one that accepts (and ignores) arguments.
template <typename InnerAction> template <typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type> internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
WithoutArgs(InnerAction&& action) { InnerAction&& action) {
return {std::forward<InnerAction>(action)}; return {std::forward<InnerAction>(action)};
} }
// Creates an action that returns 'value'. 'value' is passed by value // Creates an action that returns a value.
// instead of const reference - otherwise Return("string literal") //
// will trigger a compiler error about using array as initializer. // The returned type can be used with a mock function returning a non-void,
// non-reference type U as follows:
//
// * If R is convertible to U and U is move-constructible, then the action can
// be used with WillOnce.
//
// * If const R& is convertible to U and U is copy-constructible, then the
// action can be used with both WillOnce and WillRepeatedly.
//
// The mock expectation contains the R value from which the U return value is
// constructed (a move/copy of the argument to Return). This means that the R
// value will survive at least until the mock object's expectations are cleared
// or the mock object is destroyed, meaning that U can safely be a
// reference-like type such as std::string_view:
//
// // The mock function returns a view of a copy of the string fed to
// // Return. The view is valid even after the action is performed.
// MockFunction<std::string_view()> mock;
// EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
// const std::string_view result = mock.AsStdFunction()();
// EXPECT_EQ("taco", result);
//
template <typename R> template <typename R>
internal::ReturnAction<R> Return(R value) { internal::ReturnAction<R> Return(R value) {
return internal::ReturnAction<R>(std::move(value)); return internal::ReturnAction<R>(std::move(value));
} }
// Creates an action that returns NULL. // Creates an action that returns NULL.
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
return MakePolymorphicAction(internal::ReturnNullAction()); return MakePolymorphicAction(internal::ReturnNullAction());
} }
skipping to change at line 1275 skipping to change at line 1876
internal::ReturnRefAction<R> ReturnRef(R&&) = delete; internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
// Creates an action that returns the reference to a copy of the // Creates an action that returns the reference to a copy of the
// argument. The copy is created when the action is constructed and // argument. The copy is created when the action is constructed and
// lives as long as the action. // lives as long as the action.
template <typename R> template <typename R>
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
return internal::ReturnRefOfCopyAction<R>(x); return internal::ReturnRefOfCopyAction<R>(x);
} }
// DEPRECATED: use Return(x) directly with WillOnce.
//
// Modifies the parent action (a Return() action) to perform a move of the // Modifies the parent action (a Return() action) to perform a move of the
// argument instead of a copy. // argument instead of a copy.
// Return(ByMove()) actions can only be executed once and will assert this // Return(ByMove()) actions can only be executed once and will assert this
// invariant. // invariant.
template <typename R> template <typename R>
internal::ByMoveWrapper<R> ByMove(R x) { internal::ByMoveWrapper<R> ByMove(R x) {
return internal::ByMoveWrapper<R>(std::move(x)); return internal::ByMoveWrapper<R>(std::move(x));
} }
// Creates an action that returns an element of `vals`. Calling this action will // Creates an action that returns an element of `vals`. Calling this action will
skipping to change at line 1321 skipping to change at line 1924
} }
// The following version is DEPRECATED. // The following version is DEPRECATED.
template <size_t N, typename T> template <size_t N, typename T>
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
return {std::move(value)}; return {std::move(value)};
} }
// Creates an action that sets a pointer referent to a given value. // Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2> template <typename T1, typename T2>
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
} }
#if !GTEST_OS_WINDOWS_MOBILE #if !GTEST_OS_WINDOWS_MOBILE
// Creates an action that sets errno and returns the appropriate error. // Creates an action that sets errno and returns the appropriate error.
template <typename T> template <typename T>
PolymorphicAction<internal::SetErrnoAndReturnAction<T> > PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
SetErrnoAndReturn(int errval, T result) { int errval, T result) {
return MakePolymorphicAction( return MakePolymorphicAction(
internal::SetErrnoAndReturnAction<T>(errval, result)); internal::SetErrnoAndReturnAction<T>(errval, result));
} }
#endif // !GTEST_OS_WINDOWS_MOBILE #endif // !GTEST_OS_WINDOWS_MOBILE
// Various overloads for Invoke(). // Various overloads for Invoke().
// Legacy function. // Legacy function.
// Actions can now be implicitly constructed from callables. No need to create // Actions can now be implicitly constructed from callables. No need to create
skipping to change at line 1484 skipping to change at line 2087
// arguments than it needs. The ExcessiveArg type is used to // arguments than it needs. The ExcessiveArg type is used to
// represent those excessive arguments. In order to keep the compiler // represent those excessive arguments. In order to keep the compiler
// error messages tractable, we define it in the testing namespace // error messages tractable, we define it in the testing namespace
// instead of testing::internal. However, this is an INTERNAL TYPE // instead of testing::internal. However, this is an INTERNAL TYPE
// and subject to change without notice, so a user MUST NOT USE THIS // and subject to change without notice, so a user MUST NOT USE THIS
// TYPE DIRECTLY. // TYPE DIRECTLY.
struct ExcessiveArg {}; struct ExcessiveArg {};
// Builds an implementation of an Action<> for some particular signature, using // Builds an implementation of an Action<> for some particular signature, using
// a class defined by an ACTION* macro. // a class defined by an ACTION* macro.
template <typename F, typename Impl> struct ActionImpl; template <typename F, typename Impl>
struct ActionImpl;
template <typename Impl> template <typename Impl>
struct ImplBase { struct ImplBase {
struct Holder { struct Holder {
// Allows each copy of the Action<> to get to the Impl. // Allows each copy of the Action<> to get to the Impl.
explicit operator const Impl&() const { return *ptr; } explicit operator const Impl&() const { return *ptr; }
std::shared_ptr<Impl> ptr; std::shared_ptr<Impl> ptr;
}; };
using type = typename std::conditional<std::is_constructible<Impl>::value, using type = typename std::conditional<std::is_constructible<Impl>::value,
Impl, Holder>::type; Impl, Holder>::type;
}; };
template <typename R, typename... Args, typename Impl> template <typename R, typename... Args, typename Impl>
struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
using Base = typename ImplBase<Impl>::type; using Base = typename ImplBase<Impl>::type;
using function_type = R(Args...); using function_type = R(Args...);
using args_type = std::tuple<Args...>; using args_type = std::tuple<Args...>;
ActionImpl() = default; // Only defined if appropriate for Base. ActionImpl() = default; // Only defined if appropriate for Base.
explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { } explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
R operator()(Args&&... arg) const { R operator()(Args&&... arg) const {
static constexpr size_t kMaxArgs = static constexpr size_t kMaxArgs =
sizeof...(Args) <= 10 ? sizeof...(Args) : 10; sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
return Apply(MakeIndexSequence<kMaxArgs>{}, return Apply(MakeIndexSequence<kMaxArgs>{},
MakeIndexSequence<10 - kMaxArgs>{}, MakeIndexSequence<10 - kMaxArgs>{},
args_type{std::forward<Args>(arg)...}); args_type{std::forward<Args>(arg)...});
} }
template <std::size_t... arg_id, std::size_t... excess_id> template <std::size_t... arg_id, std::size_t... excess_id>
R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
const args_type& args) const { const args_type& args) const {
// Impl need not be specific to the signature of action being implemented; // Impl need not be specific to the signature of action being implemented;
// only the implementing function body needs to have all of the specific // only the implementing function body needs to have all of the specific
// types instantiated. Up to 10 of the args that are provided by the // types instantiated. Up to 10 of the args that are provided by the
// args_type get passed, followed by a dummy of unspecified type for the // args_type get passed, followed by a dummy of unspecified type for the
// remainder up to 10 explicit args. // remainder up to 10 explicit args.
static constexpr ExcessiveArg kExcessArg{}; static constexpr ExcessiveArg kExcessArg{};
return static_cast<const Impl&>(*this).template gmock_PerformImpl< return static_cast<const Impl&>(*this)
/*function_type=*/function_type, /*return_type=*/R, .template gmock_PerformImpl<
/*args_type=*/args_type, /*function_type=*/function_type, /*return_type=*/R,
/*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>( /*args_type=*/args_type,
/*args=*/args, std::get<arg_id>(args)..., /*argN_type=*/
((void)excess_id, kExcessArg)...); typename std::tuple_element<arg_id, args_type>::type...>(
/*args=*/args, std::get<arg_id>(args)...,
((void)excess_id, kExcessArg)...);
} }
}; };
// Stores a default-constructed Impl as part of the Action<>'s // Stores a default-constructed Impl as part of the Action<>'s
// std::function<>. The Impl should be trivial to copy. // std::function<>. The Impl should be trivial to copy.
template <typename F, typename Impl> template <typename F, typename Impl>
::testing::Action<F> MakeAction() { ::testing::Action<F> MakeAction() {
return ::testing::Action<F>(ActionImpl<F, Impl>()); return ::testing::Action<F>(ActionImpl<F, Impl>());
} }
// Stores just the one given instance of Impl. // Stores just the one given instance of Impl.
template <typename F, typename Impl> template <typename F, typename Impl>
::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
} }
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
, const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
GMOCK_INTERNAL_ARG_UNUSED, , 10) GMOCK_INTERNAL_ARG_UNUSED, , 10)
#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
skipping to change at line 1586 skipping to change at line 2192
#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
, param(::std::forward<param##_type>(gmock_p##i)) , param(::std::forward<param##_type>(gmock_p##i))
#define GMOCK_ACTION_INIT_PARAMS_(params) \ #define GMOCK_ACTION_INIT_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
#define GMOCK_ACTION_FIELD_PARAMS_(params) \ #define GMOCK_ACTION_FIELD_PARAMS_(params) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
#define GMOCK_INTERNAL_ACTION(name, full_name, params) \ #define GMOCK_INTERNAL_ACTION(name, full_name, params) \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
class full_name { \ class full_name { \
public: \ public: \
explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
: impl_(std::make_shared<gmock_Impl>( \ : impl_(std::make_shared<gmock_Impl>( \
GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \ GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \
full_name(const full_name&) = default; \ full_name(const full_name&) = default; \
full_name(full_name&&) noexcept = default; \ full_name(full_name&&) noexcept = default; \
template <typename F> \ template <typename F> \
operator ::testing::Action<F>() const { \ operator ::testing::Action<F>() const { \
return ::testing::internal::MakeAction<F>(impl_); \ return ::testing::internal::MakeAction<F>(impl_); \
} \ } \
private: \ \
class gmock_Impl { \ private: \
public: \ class gmock_Impl { \
explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ public: \
: GMOCK_ACTION_INIT_PARAMS_(params) {} \ explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
template <typename function_type, typename return_type, \ : GMOCK_ACTION_INIT_PARAMS_(params) {} \
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ template <typename function_type, typename return_type, \
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
GMOCK_ACTION_FIELD_PARAMS_(params) \ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
}; \ GMOCK_ACTION_FIELD_PARAMS_(params) \
std::shared_ptr<const gmock_Impl> impl_; \ }; \
}; \ std::shared_ptr<const gmock_Impl> impl_; \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ }; \
inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \
GMOCK_ACTION_GVALUE_PARAMS_(params)); \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
} \ inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
template <typename function_type, typename return_type, typename args_type, \ return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ GMOCK_ACTION_GVALUE_PARAMS_(params)); \
return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \ } \
gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
template <typename function_type, typename return_type, typename args_type, \
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type \
full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
} // namespace internal } // namespace internal
// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
#define ACTION(name) \ #define ACTION(name) \
class name##Action { \ class name##Action { \
public: \ public: \
explicit name##Action() noexcept {} \ explicit name##Action() noexcept {} \
name##Action(const name##Action&) noexcept {} \ name##Action(const name##Action&) noexcept {} \
template <typename F> \ template <typename F> \
operator ::testing::Action<F>() const { \ operator ::testing::Action<F>() const { \
return ::testing::internal::MakeAction<F, gmock_Impl>(); \ return ::testing::internal::MakeAction<F, gmock_Impl>(); \
} \ } \
\
private: \ private: \
class gmock_Impl { \ class gmock_Impl { \
public: \ public: \
template <typename function_type, typename return_type, \ template <typename function_type, typename return_type, \
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
}; \ }; \
}; \ }; \
inline name##Action name() GTEST_MUST_USE_RESULT_; \ inline name##Action name() GTEST_MUST_USE_RESULT_; \
inline name##Action name() { return name##Action(); } \ inline name##Action name() { return name##Action(); } \
skipping to change at line 1683 skipping to change at line 2295
#define ACTION_P9(name, ...) \ #define ACTION_P9(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
#define ACTION_P10(name, ...) \ #define ACTION_P10(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
} // namespace testing } // namespace testing
#ifdef _MSC_VER #ifdef _MSC_VER
# pragma warning(pop) #pragma warning(pop)
#endif #endif
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 End of changes. 71 change blocks. 
231 lines changed or deleted 843 lines changed or added

Home  |  About  |  Features  |  All  |  Newest  |  Dox  |  Diffs  |  RSS Feeds  |  Screenshots  |  Comments  |  Imprint  |  Privacy  |  HTTP(S)