"Fossies" - the Fresh Open Source Software Archive  

Source code changes of the file "googlemock/include/gmock/gmock-actions.h" between
googletest-release-1.10.0.tar.gz and googletest-release-1.11.0.tar.gz

About: GoogleTest is Google's (unit) testing and mocking framework for C++ tests.

gmock-actions.h  (googletest-release-1.10.0):gmock-actions.h  (googletest-release-1.11.0)
skipping to change at line 32 skipping to change at line 32
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes. // Google Mock - a framework for writing C++ mock classes.
// //
// This file implements some commonly used actions. // The ACTION* family of macros can be used in a namespace scope to
// define custom actions easily. The syntax:
//
// ACTION(name) { statements; }
//
// will define an action with the given name that executes the
// statements. The value returned by the statements will be used as
// the return value of the action. Inside the statements, you can
// refer to the K-th (0-based) argument of the mock function by
// 'argK', and refer to its type by 'argK_type'. For example:
//
// ACTION(IncrementArg1) {
// arg1_type temp = arg1;
// return ++(*temp);
// }
//
// allows you to write
//
// ...WillOnce(IncrementArg1());
//
// You can also refer to the entire argument tuple and its type by
// 'args' and 'args_type', and refer to the mock function type and its
// return type by 'function_type' and 'return_type'.
//
// Note that you don't need to specify the types of the mock function
// arguments. However rest assured that your code is still type-safe:
// you'll get a compiler error if *arg1 doesn't support the ++
// operator, or if the type of ++(*arg1) isn't compatible with the
// mock function's return type, for example.
//
// Sometimes you'll want to parameterize the action. For that you can use
// another macro:
//
// ACTION_P(name, param_name) { statements; }
//
// For example:
//
// ACTION_P(Add, n) { return arg0 + n; }
//
// will allow you to write:
//
// ...WillOnce(Add(5));
//
// Note that you don't need to provide the type of the parameter
// either. If you need to reference the type of a parameter named
// 'foo', you can write 'foo_type'. For example, in the body of
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
// of 'n'.
//
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
// multi-parameter actions.
//
// For the purpose of typing, you can view
//
// ACTION_Pk(Foo, p1, ..., pk) { ... }
//
// as shorthand for
//
// template <typename p1_type, ..., typename pk_type>
// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
//
// In particular, you can provide the template type arguments
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
// although usually you can rely on the compiler to infer the types
// for you automatically. You can assign the result of expression
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
// pk_type>. This can be useful when composing actions.
//
// You can also overload actions with different numbers of parameters:
//
// ACTION_P(Plus, a) { ... }
// ACTION_P2(Plus, a, b) { ... }
//
// While it's tempting to always use the ACTION* macros when defining
// a new action, you should also consider implementing ActionInterface
// or using MakePolymorphicAction() instead, especially if you need to
// use the action a lot. While these approaches require more work,
// they give you more control on the types of the mock function
// arguments and the action parameters, which in general leads to
// better compiler error messages that pay off in the long run. They
// also allow overloading actions based on parameter types (as opposed
// to just based on the number of parameters).
//
// CAVEAT:
//
// ACTION*() can only be used in a namespace scope as templates cannot be
// declared inside of a local class.
// Users can, however, define any local functors (e.g. a lambda) that
// can be used as actions.
//
// MORE INFORMATION:
//
// To learn more about using these macros, please search for 'ACTION' on
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
// GOOGLETEST_CM0002 DO NOT DELETE // GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#ifndef _WIN32_WCE #ifndef _WIN32_WCE
# include <errno.h> # include <errno.h>
#endif #endif
#include <algorithm> #include <algorithm>
#include <functional> #include <functional>
#include <memory> #include <memory>
#include <string> #include <string>
#include <tuple>
#include <type_traits> #include <type_traits>
#include <utility> #include <utility>
#include "gmock/internal/gmock-internal-utils.h" #include "gmock/internal/gmock-internal-utils.h"
#include "gmock/internal/gmock-port.h" #include "gmock/internal/gmock-port.h"
#include "gmock/internal/gmock-pp.h"
#ifdef _MSC_VER #ifdef _MSC_VER
# pragma warning(push) # pragma warning(push)
# pragma warning(disable:4100) # pragma warning(disable:4100)
#endif #endif
namespace testing { namespace testing {
// To implement an action Foo, define: // To implement an action Foo, define:
// 1. a class FooAction that implements the ActionInterface interface, and // 1. a class FooAction that implements the ActionInterface interface, and
skipping to change at line 164 skipping to change at line 259
#if GMOCK_WCHAR_T_IS_NATIVE_ #if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
#endif #endif
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
// Simple two-arg form of std::disjunction.
template <typename P, typename Q>
using disjunction = typename ::std::conditional<P::value, P, Q>::type;
} // namespace internal } // namespace internal
// When an unexpected function call is encountered, Google Mock will // When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its // let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value; // return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have // otherwise Google Mock won't know what value to return and will have
// to abort the process. // to abort the process.
// //
// The DefaultValue<T> class allows a user to specify the // The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly // default value for a type T that is both copyable and publicly
skipping to change at line 352 skipping to change at line 451
// Adapter must be copyable to satisfy std::function requirements. // Adapter must be copyable to satisfy std::function requirements.
::std::shared_ptr<ActionInterface<F>> impl_; ::std::shared_ptr<ActionInterface<F>> impl_;
template <typename... Args> template <typename... Args>
typename internal::Function<F>::Result operator()(Args&&... args) { typename internal::Function<F>::Result operator()(Args&&... args) {
return impl_->Perform( return impl_->Perform(
::std::forward_as_tuple(::std::forward<Args>(args)...)); ::std::forward_as_tuple(::std::forward<Args>(args)...));
} }
}; };
template <typename G>
using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
public: public:
typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
// Constructs a null Action. Needed for storing Action objects in // Constructs a null Action. Needed for storing Action objects in
// STL containers. // STL containers.
Action() {} Action() {}
// Construct an Action from a specified callable. // Construct an Action from a specified callable.
// This cannot take std::function directly, because then Action would not be // This cannot take std::function directly, because then Action would not be
// directly constructible from lambda (it would require two conversions). // directly constructible from lambda (it would require two conversions).
template <typename G, template <
typename = typename ::std::enable_if< typename G,
::std::is_constructible<::std::function<F>, G>::value>::type> typename = typename std::enable_if<internal::disjunction<
Action(G&& fun) : fun_(::std::forward<G>(fun)) {} // NOLINT IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
G>>::value>::type>
Action(G&& fun) { // NOLINT
Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
}
// Constructs an Action from its implementation. // Constructs an Action from its implementation.
explicit Action(ActionInterface<F>* impl) explicit Action(ActionInterface<F>* impl)
: fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
// This constructor allows us to turn an Action<Func> object into an // This constructor allows us to turn an Action<Func> object into an
// Action<F>, as long as F's arguments can be implicitly converted // Action<F>, as long as F's arguments can be implicitly converted
// to Func's and Func's return type can be implicitly converted to F's. // to Func's and Func's return type can be implicitly converted to F's.
template <typename Func> template <typename Func>
explicit Action(const Action<Func>& action) : fun_(action.fun_) {} explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
skipping to change at line 398 skipping to change at line 504
if (IsDoDefault()) { if (IsDoDefault()) {
internal::IllegalDoDefault(__FILE__, __LINE__); internal::IllegalDoDefault(__FILE__, __LINE__);
} }
return internal::Apply(fun_, ::std::move(args)); return internal::Apply(fun_, ::std::move(args));
} }
private: private:
template <typename G> template <typename G>
friend class Action; friend class Action;
template <typename G>
void Init(G&& g, ::std::true_type) {
fun_ = ::std::forward<G>(g);
}
template <typename G>
void Init(G&& g, ::std::false_type) {
fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
}
template <typename FunctionImpl>
struct IgnoreArgs {
template <typename... Args>
Result operator()(const Args&...) const {
return function_impl();
}
FunctionImpl function_impl;
};
// fun_ is an empty function if and only if this is the DoDefault() action. // fun_ is an empty function if and only if this is the DoDefault() action.
::std::function<F> fun_; ::std::function<F> fun_;
}; };
// The PolymorphicAction class template makes it easy to implement a // The PolymorphicAction class template makes it easy to implement a
// polymorphic action (i.e. an action that can be used in mock // polymorphic action (i.e. an action that can be used in mock
// functions of than one type, e.g. Return()). // functions of than one type, e.g. Return()).
// //
// To define a polymorphic action, a user first provides a COPYABLE // To define a polymorphic action, a user first provides a COPYABLE
// implementation class that has a Perform() method template: // implementation class that has a Perform() method template:
skipping to change at line 448 skipping to change at line 574
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
Result Perform(const ArgumentTuple& args) override { Result Perform(const ArgumentTuple& args) override {
return impl_.template Perform<Result>(args); return impl_.template Perform<Result>(args);
} }
private: private:
Impl impl_; Impl impl_;
GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
}; };
Impl impl_; Impl impl_;
GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
}; };
// Creates an Action from its implementation and returns it. The // Creates an Action from its implementation and returns it. The
// created Action object owns the implementation. // created Action object owns the implementation.
template <typename F> template <typename F>
Action<F> MakeAction(ActionInterface<F>* impl) { Action<F> MakeAction(ActionInterface<F>* impl) {
return Action<F>(impl); return Action<F>(impl);
} }
// Creates a polymorphic action from its implementation. This is // Creates a polymorphic action from its implementation. This is
skipping to change at line 595 skipping to change at line 717
Result Perform(const ArgumentTuple&) override { Result Perform(const ArgumentTuple&) override {
GTEST_CHECK_(!performed_) GTEST_CHECK_(!performed_)
<< "A ByMove() action should only be performed once."; << "A ByMove() action should only be performed once.";
performed_ = true; performed_ = true;
return std::move(wrapper_->payload); return std::move(wrapper_->payload);
} }
private: private:
bool performed_; bool performed_;
const std::shared_ptr<R> wrapper_; const std::shared_ptr<R> wrapper_;
GTEST_DISALLOW_ASSIGN_(Impl);
}; };
const std::shared_ptr<R> value_; const std::shared_ptr<R> value_;
GTEST_DISALLOW_ASSIGN_(ReturnAction);
}; };
// Implements the ReturnNull() action. // Implements the ReturnNull() action.
class ReturnNullAction { class ReturnNullAction {
public: public:
// Allows ReturnNull() to be used in any pointer-returning function. In C++11 // Allows ReturnNull() to be used in any pointer-returning function. In C++11
// this is enforced by returning nullptr, and in non-C++11 by asserting a // this is enforced by returning nullptr, and in non-C++11 by asserting a
// pointer type on compile time. // pointer type on compile time.
template <typename Result, typename ArgumentTuple> template <typename Result, typename ArgumentTuple>
static Result Perform(const ArgumentTuple&) { static Result Perform(const ArgumentTuple&) {
skipping to change at line 662 skipping to change at line 780
public: public:
typedef typename Function<F>::Result Result; typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple; typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(T& ref) : ref_(ref) {} // NOLINT explicit Impl(T& ref) : ref_(ref) {} // NOLINT
Result Perform(const ArgumentTuple&) override { return ref_; } Result Perform(const ArgumentTuple&) override { return ref_; }
private: private:
T& ref_; T& ref_;
GTEST_DISALLOW_ASSIGN_(Impl);
}; };
T& ref_; T& ref_;
GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
}; };
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
// used in any function that returns a reference to the type of x, // used in any function that returns a reference to the type of x,
// regardless of the argument types. // regardless of the argument types.
template <typename T> template <typename T>
class ReturnRefOfCopyAction { class ReturnRefOfCopyAction {
public: public:
// Constructs a ReturnRefOfCopyAction object from the reference to // Constructs a ReturnRefOfCopyAction object from the reference to
// be returned. // be returned.
skipping to change at line 709 skipping to change at line 823
public: public:
typedef typename Function<F>::Result Result; typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple; typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const T& value) : value_(value) {} // NOLINT explicit Impl(const T& value) : value_(value) {} // NOLINT
Result Perform(const ArgumentTuple&) override { return value_; } Result Perform(const ArgumentTuple&) override { return value_; }
private: private:
T value_; T value_;
GTEST_DISALLOW_ASSIGN_(Impl);
}; };
const T value_; const T value_;
};
// Implements the polymorphic ReturnRoundRobin(v) action, which can be
// used in any function that returns the element_type of v.
template <typename T>
class ReturnRoundRobinAction {
public:
explicit ReturnRoundRobinAction(std::vector<T> values) {
GTEST_CHECK_(!values.empty())
<< "ReturnRoundRobin requires at least one element.";
state_->values = std::move(values);
}
template <typename... Args>
T operator()(Args&&...) const {
return state_->Next();
}
private:
struct State {
T Next() {
T ret_val = values[i++];
if (i == values.size()) i = 0;
return ret_val;
}
GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction); std::vector<T> values;
size_t i = 0;
};
std::shared_ptr<State> state_ = std::make_shared<State>();
}; };
// Implements the polymorphic DoDefault() action. // Implements the polymorphic DoDefault() action.
class DoDefaultAction { class DoDefaultAction {
public: public:
// This template type conversion operator allows DoDefault() to be // This template type conversion operator allows DoDefault() to be
// used in any function. // used in any function.
template <typename F> template <typename F>
operator Action<F>() const { return Action<F>(); } // NOLINT operator Action<F>() const { return Action<F>(); } // NOLINT
}; };
skipping to change at line 742 skipping to change at line 882
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
template <typename Result, typename ArgumentTuple> template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& /* args */) const { void Perform(const ArgumentTuple& /* args */) const {
*ptr_ = value_; *ptr_ = value_;
} }
private: private:
T1* const ptr_; T1* const ptr_;
const T2 value_; const T2 value_;
GTEST_DISALLOW_ASSIGN_(AssignAction);
}; };
#if !GTEST_OS_WINDOWS_MOBILE #if !GTEST_OS_WINDOWS_MOBILE
// Implements the SetErrnoAndReturn action to simulate return from // Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions. // various system calls and libc functions.
template <typename T> template <typename T>
class SetErrnoAndReturnAction { class SetErrnoAndReturnAction {
public: public:
SetErrnoAndReturnAction(int errno_value, T result) SetErrnoAndReturnAction(int errno_value, T result)
skipping to change at line 765 skipping to change at line 903
result_(result) {} result_(result) {}
template <typename Result, typename ArgumentTuple> template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) const { Result Perform(const ArgumentTuple& /* args */) const {
errno = errno_; errno = errno_;
return result_; return result_;
} }
private: private:
const int errno_; const int errno_;
const T result_; const T result_;
GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
}; };
#endif // !GTEST_OS_WINDOWS_MOBILE #endif // !GTEST_OS_WINDOWS_MOBILE
// Implements the SetArgumentPointee<N>(x) action for any function // Implements the SetArgumentPointee<N>(x) action for any function
// whose N-th argument (0-based) is a pointer to x's type. // whose N-th argument (0-based) is a pointer to x's type.
template <size_t N, typename A, typename = void> template <size_t N, typename A, typename = void>
struct SetArgumentPointeeAction { struct SetArgumentPointeeAction {
A value; A value;
skipping to change at line 818 skipping to change at line 954
return function_impl(); return function_impl();
} }
}; };
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr> template <class Class, typename MethodPtr>
struct InvokeMethodWithoutArgsAction { struct InvokeMethodWithoutArgsAction {
Class* const obj_ptr; Class* const obj_ptr;
const MethodPtr method_ptr; const MethodPtr method_ptr;
using ReturnType = typename std::result_of<MethodPtr(Class*)>::type; using ReturnType =
decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
template <typename... Args> template <typename... Args>
ReturnType operator()(const Args&...) const { ReturnType operator()(const Args&...) const {
return (obj_ptr->*method_ptr)(); return (obj_ptr->*method_ptr)();
} }
}; };
// Implements the IgnoreResult(action) action. // Implements the IgnoreResult(action) action.
template <typename A> template <typename A>
class IgnoreResultAction { class IgnoreResultAction {
skipping to change at line 871 skipping to change at line 1008
action_.Perform(args); action_.Perform(args);
} }
private: private:
// Type OriginalFunction is the same as F except that its return // Type OriginalFunction is the same as F except that its return
// type is IgnoredValue. // type is IgnoredValue.
typedef typename internal::Function<F>::MakeResultIgnoredValue typedef typename internal::Function<F>::MakeResultIgnoredValue
OriginalFunction; OriginalFunction;
const Action<OriginalFunction> action_; const Action<OriginalFunction> action_;
GTEST_DISALLOW_ASSIGN_(Impl);
}; };
const A action_; const A action_;
GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
}; };
template <typename InnerAction, size_t... I> template <typename InnerAction, size_t... I>
struct WithArgsAction { struct WithArgsAction {
InnerAction action; InnerAction action;
// The inner action could be anything convertible to Action<X>. // The inner action could be anything convertible to Action<X>.
// We use the conversion operator to detect the signature of the inner Action. // We use the conversion operator to detect the signature of the inner Action.
template <typename R, typename... Args> template <typename R, typename... Args>
operator Action<R(Args...)>() const { // NOLINT operator Action<R(Args...)>() const { // NOLINT
Action<R(typename std::tuple_element<I, std::tuple<Args...>>::type...)> using TupleType = std::tuple<Args...>;
Action<R(typename std::tuple_element<I, TupleType>::type...)>
converted(action); converted(action);
return [converted](Args... args) -> R { return [converted](Args... args) -> R {
return converted.Perform(std::forward_as_tuple( return converted.Perform(std::forward_as_tuple(
std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
}; };
} }
}; };
template <typename... Actions> template <typename... Actions>
struct DoAllAction { struct DoAllAction {
private: private:
template <typename... Args, size_t... I> template <typename T>
std::vector<Action<void(Args...)>> Convert(IndexSequence<I...>) const { using NonFinalType =
return {std::get<I>(actions)...}; typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
template <typename ActionT, size_t... I>
std::vector<ActionT> Convert(IndexSequence<I...>) const {
return {ActionT(std::get<I>(actions))...};
} }
public: public:
std::tuple<Actions...> actions; std::tuple<Actions...> actions;
template <typename R, typename... Args> template <typename R, typename... Args>
operator Action<R(Args...)>() const { // NOLINT operator Action<R(Args...)>() const { // NOLINT
struct Op { struct Op {
std::vector<Action<void(Args...)>> converted; std::vector<Action<void(NonFinalType<Args>...)>> converted;
Action<R(Args...)> last; Action<R(Args...)> last;
R operator()(Args... args) const { R operator()(Args... args) const {
auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...); auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
for (auto& a : converted) { for (auto& a : converted) {
a.Perform(tuple_args); a.Perform(tuple_args);
} }
return last.Perform(tuple_args); return last.Perform(std::move(tuple_args));
} }
}; };
return Op{Convert<Args...>(MakeIndexSequence<sizeof...(Actions) - 1>()), return Op{Convert<Action<void(NonFinalType<Args>...)>>(
MakeIndexSequence<sizeof...(Actions) - 1>()),
std::get<sizeof...(Actions) - 1>(actions)}; std::get<sizeof...(Actions) - 1>(actions)};
} }
}; };
template <typename T, typename... Params>
struct ReturnNewAction {
T* operator()() const {
return internal::Apply(
[](const Params&... unpacked_params) {
return new T(unpacked_params...);
},
params);
}
std::tuple<Params...> params;
};
template <size_t k>
struct ReturnArgAction {
template <typename... Args>
auto operator()(const Args&... args) const ->
typename std::tuple_element<k, std::tuple<Args...>>::type {
return std::get<k>(std::tie(args...));
}
};
template <size_t k, typename Ptr>
struct SaveArgAction {
Ptr pointer;
template <typename... Args>
void operator()(const Args&... args) const {
*pointer = std::get<k>(std::tie(args...));
}
};
template <size_t k, typename Ptr>
struct SaveArgPointeeAction {
Ptr pointer;
template <typename... Args>
void operator()(const Args&... args) const {
*pointer = *std::get<k>(std::tie(args...));
}
};
template <size_t k, typename T>
struct SetArgRefereeAction {
T value;
template <typename... Args>
void operator()(Args&&... args) const {
using argk_type =
typename ::std::tuple_element<k, std::tuple<Args...>>::type;
static_assert(std::is_lvalue_reference<argk_type>::value,
"Argument must be a reference type.");
std::get<k>(std::tie(args...)) = value;
}
};
template <size_t k, typename I1, typename I2>
struct SetArrayArgumentAction {
I1 first;
I2 last;
template <typename... Args>
void operator()(const Args&... args) const {
auto value = std::get<k>(std::tie(args...));
for (auto it = first; it != last; ++it, (void)++value) {
*value = *it;
}
}
};
template <size_t k>
struct DeleteArgAction {
template <typename... Args>
void operator()(const Args&... args) const {
delete std::get<k>(std::tie(args...));
}
};
template <typename Ptr>
struct ReturnPointeeAction {
Ptr pointer;
template <typename... Args>
auto operator()(const Args&...) const -> decltype(*pointer) {
return *pointer;
}
};
#if GTEST_HAS_EXCEPTIONS
template <typename T>
struct ThrowAction {
T exception;
// We use a conversion operator to adapt to any return type.
template <typename R, typename... Args>
operator Action<R(Args...)>() const { // NOLINT
T copy = exception;
return [copy](Args...) -> R { throw copy; };
}
};
#endif // GTEST_HAS_EXCEPTIONS
} // namespace internal } // namespace internal
// An Unused object can be implicitly constructed from ANY value. // An Unused object can be implicitly constructed from ANY value.
// This is handy when defining actions that ignore some or all of the // This is handy when defining actions that ignore some or all of the
// mock function arguments. For example, given // mock function arguments. For example, given
// //
// MOCK_METHOD3(Foo, double(const string& label, double x, double y)); // MOCK_METHOD3(Foo, double(const string& label, double x, double y));
// MOCK_METHOD3(Bar, double(int index, double x, double y)); // MOCK_METHOD3(Bar, double(int index, double x, double y));
// //
// instead of // instead of
skipping to change at line 962 skipping to change at line 1200
// // We can declare any uninteresting argument as Unused. // // We can declare any uninteresting argument as Unused.
// double DistanceToOrigin(Unused, double x, double y) { // double DistanceToOrigin(Unused, double x, double y) {
// return sqrt(x*x + y*y); // return sqrt(x*x + y*y);
// } // }
// ... // ...
// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
typedef internal::IgnoredValue Unused; typedef internal::IgnoredValue Unused;
// Creates an action that does actions a1, a2, ..., sequentially in // Creates an action that does actions a1, a2, ..., sequentially in
// each invocation. // each invocation. All but the last action will have a readonly view of the
// arguments.
template <typename... Action> template <typename... Action>
internal::DoAllAction<typename std::decay<Action>::type...> DoAll( internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
Action&&... action) { Action&&... action) {
return {std::forward_as_tuple(std::forward<Action>(action)...)}; return {std::forward_as_tuple(std::forward<Action>(action)...)};
} }
// WithArg<k>(an_action) creates an action that passes the k-th // WithArg<k>(an_action) creates an action that passes the k-th
// (0-based) argument of the mock function to an_action and performs // (0-based) argument of the mock function to an_action and performs
// it. It adapts an action accepting one argument to one that accepts // it. It adapts an action accepting one argument to one that accepts
// multiple arguments. For convenience, we also provide // multiple arguments. For convenience, we also provide
skipping to change at line 1024 skipping to change at line 1263
inline PolymorphicAction<internal::ReturnVoidAction> Return() { inline PolymorphicAction<internal::ReturnVoidAction> Return() {
return MakePolymorphicAction(internal::ReturnVoidAction()); return MakePolymorphicAction(internal::ReturnVoidAction());
} }
// Creates an action that returns the reference to a variable. // Creates an action that returns the reference to a variable.
template <typename R> template <typename R>
inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
return internal::ReturnRefAction<R>(x); return internal::ReturnRefAction<R>(x);
} }
// Prevent using ReturnRef on reference to temporary.
template <typename R, R* = nullptr>
internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
// Creates an action that returns the reference to a copy of the // Creates an action that returns the reference to a copy of the
// argument. The copy is created when the action is constructed and // argument. The copy is created when the action is constructed and
// lives as long as the action. // lives as long as the action.
template <typename R> template <typename R>
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
return internal::ReturnRefOfCopyAction<R>(x); return internal::ReturnRefOfCopyAction<R>(x);
} }
// Modifies the parent action (a Return() action) to perform a move of the // Modifies the parent action (a Return() action) to perform a move of the
// argument instead of a copy. // argument instead of a copy.
// Return(ByMove()) actions can only be executed once and will assert this // Return(ByMove()) actions can only be executed once and will assert this
// invariant. // invariant.
template <typename R> template <typename R>
internal::ByMoveWrapper<R> ByMove(R x) { internal::ByMoveWrapper<R> ByMove(R x) {
return internal::ByMoveWrapper<R>(std::move(x)); return internal::ByMoveWrapper<R>(std::move(x));
} }
// Creates an action that returns an element of `vals`. Calling this action will
// repeatedly return the next value from `vals` until it reaches the end and
// will restart from the beginning.
template <typename T>
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
return internal::ReturnRoundRobinAction<T>(std::move(vals));
}
// Creates an action that returns an element of `vals`. Calling this action will
// repeatedly return the next value from `vals` until it reaches the end and
// will restart from the beginning.
template <typename T>
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
std::initializer_list<T> vals) {
return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
}
// Creates an action that does the default action for the give mock function. // Creates an action that does the default action for the give mock function.
inline internal::DoDefaultAction DoDefault() { inline internal::DoDefaultAction DoDefault() {
return internal::DoDefaultAction(); return internal::DoDefaultAction();
} }
// Creates an action that sets the variable pointed by the N-th // Creates an action that sets the variable pointed by the N-th
// (0-based) function argument to 'value'. // (0-based) function argument to 'value'.
template <size_t N, typename T> template <size_t N, typename T>
internal::SetArgumentPointeeAction<N, T> SetArgPointee(T x) { internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
return {std::move(x)}; return {std::move(value)};
} }
// The following version is DEPRECATED. // The following version is DEPRECATED.
template <size_t N, typename T> template <size_t N, typename T>
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T x) { internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
return {std::move(x)}; return {std::move(value)};
} }
// Creates an action that sets a pointer referent to a given value. // Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2> template <typename T1, typename T2>
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
} }
#if !GTEST_OS_WINDOWS_MOBILE #if !GTEST_OS_WINDOWS_MOBILE
skipping to change at line 1134 skipping to change at line 1394
// //
// ByRef<const Base>(derived) // ByRef<const Base>(derived)
// //
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
// However, it may still be used for consistency with ByMove(). // However, it may still be used for consistency with ByMove().
template <typename T> template <typename T>
inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
return ::std::reference_wrapper<T>(l_value); return ::std::reference_wrapper<T>(l_value);
} }
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
// instance of type T, constructed on the heap with constructor arguments
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
template <typename T, typename... Params>
internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
Params&&... params) {
return {std::forward_as_tuple(std::forward<Params>(params)...)};
}
// Action ReturnArg<k>() returns the k-th argument of the mock function.
template <size_t k>
internal::ReturnArgAction<k> ReturnArg() {
return {};
}
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
// mock function to *pointer.
template <size_t k, typename Ptr>
internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
return {pointer};
}
// Action SaveArgPointee<k>(pointer) saves the value pointed to
// by the k-th (0-based) argument of the mock function to *pointer.
template <size_t k, typename Ptr>
internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
return {pointer};
}
// Action SetArgReferee<k>(value) assigns 'value' to the variable
// referenced by the k-th (0-based) argument of the mock function.
template <size_t k, typename T>
internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
T&& value) {
return {std::forward<T>(value)};
}
// Action SetArrayArgument<k>(first, last) copies the elements in
// source range [first, last) to the array pointed to by the k-th
// (0-based) argument, which can be either a pointer or an
// iterator. The action does not take ownership of the elements in the
// source range.
template <size_t k, typename I1, typename I2>
internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
I2 last) {
return {first, last};
}
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
// function.
template <size_t k>
internal::DeleteArgAction<k> DeleteArg() {
return {};
}
// This action returns the value pointed to by 'pointer'.
template <typename Ptr>
internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
return {pointer};
}
// Action Throw(exception) can be used in a mock function of any type
// to throw the given exception. Any copyable value can be thrown.
#if GTEST_HAS_EXCEPTIONS
template <typename T>
internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
return {std::forward<T>(exception)};
}
#endif // GTEST_HAS_EXCEPTIONS
namespace internal {
// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
// defines an action that can be used in a mock function. Typically,
// these actions only care about a subset of the arguments of the mock
// function. For example, if such an action only uses the second
// argument, it can be used in any mock function that takes >= 2
// arguments where the type of the second argument is compatible.
//
// Therefore, the action implementation must be prepared to take more
// arguments than it needs. The ExcessiveArg type is used to
// represent those excessive arguments. In order to keep the compiler
// error messages tractable, we define it in the testing namespace
// instead of testing::internal. However, this is an INTERNAL TYPE
// and subject to change without notice, so a user MUST NOT USE THIS
// TYPE DIRECTLY.
struct ExcessiveArg {};
// Builds an implementation of an Action<> for some particular signature, using
// a class defined by an ACTION* macro.
template <typename F, typename Impl> struct ActionImpl;
template <typename Impl>
struct ImplBase {
struct Holder {
// Allows each copy of the Action<> to get to the Impl.
explicit operator const Impl&() const { return *ptr; }
std::shared_ptr<Impl> ptr;
};
using type = typename std::conditional<std::is_constructible<Impl>::value,
Impl, Holder>::type;
};
template <typename R, typename... Args, typename Impl>
struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
using Base = typename ImplBase<Impl>::type;
using function_type = R(Args...);
using args_type = std::tuple<Args...>;
ActionImpl() = default; // Only defined if appropriate for Base.
explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { }
R operator()(Args&&... arg) const {
static constexpr size_t kMaxArgs =
sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
return Apply(MakeIndexSequence<kMaxArgs>{},
MakeIndexSequence<10 - kMaxArgs>{},
args_type{std::forward<Args>(arg)...});
}
template <std::size_t... arg_id, std::size_t... excess_id>
R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
const args_type& args) const {
// Impl need not be specific to the signature of action being implemented;
// only the implementing function body needs to have all of the specific
// types instantiated. Up to 10 of the args that are provided by the
// args_type get passed, followed by a dummy of unspecified type for the
// remainder up to 10 explicit args.
static constexpr ExcessiveArg kExcessArg{};
return static_cast<const Impl&>(*this).template gmock_PerformImpl<
/*function_type=*/function_type, /*return_type=*/R,
/*args_type=*/args_type,
/*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>(
/*args=*/args, std::get<arg_id>(args)...,
((void)excess_id, kExcessArg)...);
}
};
// Stores a default-constructed Impl as part of the Action<>'s
// std::function<>. The Impl should be trivial to copy.
template <typename F, typename Impl>
::testing::Action<F> MakeAction() {
return ::testing::Action<F>(ActionImpl<F, Impl>());
}
// Stores just the one given instance of Impl.
template <typename F, typename Impl>
::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
}
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
, const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
GMOCK_INTERNAL_ARG_UNUSED, , 10)
#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
#define GMOCK_ACTION_TYPE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
, param##_type gmock_p##i
#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
, std::forward<param##_type>(gmock_p##i)
#define GMOCK_ACTION_GVALUE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
, param(::std::forward<param##_type>(gmock_p##i))
#define GMOCK_ACTION_INIT_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
#define GMOCK_ACTION_FIELD_PARAMS_(params) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
#define GMOCK_INTERNAL_ACTION(name, full_name, params) \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
class full_name { \
public: \
explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
: impl_(std::make_shared<gmock_Impl>( \
GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \
full_name(const full_name&) = default; \
full_name(full_name&&) noexcept = default; \
template <typename F> \
operator ::testing::Action<F>() const { \
return ::testing::internal::MakeAction<F>(impl_); \
} \
private: \
class gmock_Impl { \
public: \
explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
: GMOCK_ACTION_INIT_PARAMS_(params) {} \
template <typename function_type, typename return_type, \
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
GMOCK_ACTION_FIELD_PARAMS_(params) \
}; \
std::shared_ptr<const gmock_Impl> impl_; \
}; \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
GMOCK_ACTION_GVALUE_PARAMS_(params)); \
} \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
template <typename function_type, typename return_type, typename args_type, \
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \
gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
} // namespace internal
// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
#define ACTION(name) \
class name##Action { \
public: \
explicit name##Action() noexcept {} \
name##Action(const name##Action&) noexcept {} \
template <typename F> \
operator ::testing::Action<F>() const { \
return ::testing::internal::MakeAction<F, gmock_Impl>(); \
} \
private: \
class gmock_Impl { \
public: \
template <typename function_type, typename return_type, \
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
}; \
}; \
inline name##Action name() GTEST_MUST_USE_RESULT_; \
inline name##Action name() { return name##Action(); } \
template <typename function_type, typename return_type, typename args_type, \
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type name##Action::gmock_Impl::gmock_PerformImpl( \
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
#define ACTION_P2(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
#define ACTION_P3(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
#define ACTION_P4(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
#define ACTION_P5(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
#define ACTION_P6(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
#define ACTION_P7(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
#define ACTION_P8(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
#define ACTION_P9(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
#define ACTION_P10(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
} // namespace testing } // namespace testing
#ifdef _MSC_VER #ifdef _MSC_VER
# pragma warning(pop) # pragma warning(pop)
#endif #endif
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 End of changes. 36 change blocks. 
45 lines changed or deleted 591 lines changed or added

Home  |  About  |  Features  |  All  |  Newest  |  Dox  |  Diffs  |  RSS Feeds  |  Screenshots  |  Comments  |  Imprint  |  Privacy  |  HTTP(S)