## "Fossies" - the Fresh Open Source Software archive

### Member "ParaView-3.98.1-Windows-64bit/bin/Lib/site-packages/numpy/lib/arraysetops.py" of archive ParaView-3.98.1-Windows-64bit.zip:

```"""
Set operations for 1D numeric arrays based on sorting.

:Contains:
ediff1d,
unique,
intersect1d,
setxor1d,
in1d,
union1d,
setdiff1d

:Notes:

For floating point arrays, inaccurate results may appear due to usual round-off
and floating point comparison issues.

Speed could be gained in some operations by an implementation of
sort(), that can provide directly the permutation vectors, avoiding
thus calls to argsort().

To do: Optionally return indices analogously to unique for all functions.

:Author: Robert Cimrman
"""
__all__ = ['ediff1d', 'intersect1d', 'setxor1d', 'union1d', 'setdiff1d',
'unique', 'in1d']

import numpy as np
from numpy.lib.utils import deprecate

def ediff1d(ary, to_end=None, to_begin=None):
"""
The differences between consecutive elements of an array.

Parameters
----------
ary : array_like
If necessary, will be flattened before the differences are taken.
to_end : array_like, optional
Number(s) to append at the end of the returned differences.
to_begin : array_like, optional
Number(s) to prepend at the beginning of the returned differences.

Returns
-------
ed : ndarray
The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``.

--------

Notes
-----
if the `to_begin` and/or `to_end` parameters are used.

Examples
--------
>>> x = np.array([1, 2, 4, 7, 0])
>>> np.ediff1d(x)
array([ 1,  2,  3, -7])

>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
array([-99,   1,   2,   3,  -7,  88,  99])

The returned array is always 1D.

>>> y = [[1, 2, 4], [1, 6, 24]]
>>> np.ediff1d(y)
array([ 1,  2, -3,  5, 18])

"""
ary = np.asanyarray(ary).flat
ed = ary[1:] - ary[:-1]
arrays = [ed]
if to_begin is not None:
arrays.insert(0, to_begin)
if to_end is not None:
arrays.append(to_end)

if len(arrays) != 1:
# We'll save ourselves a copy of a potentially large array in
# the common case where neither to_begin or to_end was given.
ed = np.hstack(arrays)

return ed

def unique(ar, return_index=False, return_inverse=False):
"""
Find the unique elements of an array.

Returns the sorted unique elements of an array. There are two optional
outputs in addition to the unique elements: the indices of the input array
that give the unique values, and the indices of the unique array that
reconstruct the input array.

Parameters
----------
ar : array_like
Input array. This will be flattened if it is not already 1-D.
return_index : bool, optional
If True, also return the indices of `ar` that result in the unique
array.
return_inverse : bool, optional
If True, also return the indices of the unique array that can be used
to reconstruct `ar`.

Returns
-------
unique : ndarray
The sorted unique values.
unique_indices : ndarray, optional
The indices of the first occurrences of the unique values in the
(flattened) original array. Only provided if `return_index` is True.
unique_inverse : ndarray, optional
The indices to reconstruct the (flattened) original array from the
unique array. Only provided if `return_inverse` is True.

--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Examples
--------
>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])

Return the indices of the original array that give the unique values:

>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'],
dtype='|S1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'],
dtype='|S1')

Reconstruct the input array from the unique values:

>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, 3, 1, 2, 1])
>>> u[indices]
array([1, 2, 6, 4, 2, 3, 2])

"""
try:
ar = ar.flatten()
except AttributeError:
if not return_inverse and not return_index:
items = sorted(set(ar))
return np.asarray(items)
else:
ar = np.asanyarray(ar).flatten()

if ar.size == 0:
if return_inverse and return_index:
return ar, np.empty(0, np.bool), np.empty(0, np.bool)
elif return_inverse or return_index:
return ar, np.empty(0, np.bool)
else:
return ar

if return_inverse or return_index:
if return_index:
perm = ar.argsort(kind='mergesort')
else:
perm = ar.argsort()
aux = ar[perm]
flag = np.concatenate(([True], aux[1:] != aux[:-1]))
if return_inverse:
iflag = np.cumsum(flag) - 1
iperm = perm.argsort()
if return_index:
return aux[flag], perm[flag], iflag[iperm]
else:
return aux[flag], iflag[iperm]
else:
return aux[flag], perm[flag]

else:
ar.sort()
flag = np.concatenate(([True], ar[1:] != ar[:-1]))
return ar[flag]

def intersect1d(ar1, ar2, assume_unique=False):
"""
Find the intersection of two arrays.

Return the sorted, unique values that are in both of the input arrays.

Parameters
----------
ar1, ar2 : array_like
Input arrays.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation.  Default is False.

Returns
-------
out : ndarray
Sorted 1D array of common and unique elements.

--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Examples
--------
>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
array([1, 3])

"""
if not assume_unique:
# Might be faster than unique( intersect1d( ar1, ar2 ) )?
ar1 = unique(ar1)
ar2 = unique(ar2)
aux = np.concatenate( (ar1, ar2) )
aux.sort()
return aux[aux[1:] == aux[:-1]]

def setxor1d(ar1, ar2, assume_unique=False):
"""
Find the set exclusive-or of two arrays.

Return the sorted, unique values that are in only one (not both) of the
input arrays.

Parameters
----------
ar1, ar2 : array_like
Input arrays.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation.  Default is False.

Returns
-------
xor : ndarray
Sorted 1D array of unique values that are in only one of the input
arrays.

Examples
--------
>>> a = np.array([1, 2, 3, 2, 4])
>>> b = np.array([2, 3, 5, 7, 5])
>>> np.setxor1d(a,b)
array([1, 4, 5, 7])

"""
if not assume_unique:
ar1 = unique(ar1)
ar2 = unique(ar2)

aux = np.concatenate( (ar1, ar2) )
if aux.size == 0:
return aux

aux.sort()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
flag = np.concatenate( ([True], aux[1:] != aux[:-1], [True] ) )
#    flag2 = ediff1d( flag ) == 0
flag2 = flag[1:] == flag[:-1]
return aux[flag2]

def in1d(ar1, ar2, assume_unique=False):
"""
Test whether each element of a 1D array is also present in a second array.

Returns a boolean array the same length as `ar1` that is True
where an element of `ar1` is in `ar2` and False otherwise.

Parameters
----------
ar1 : array_like, shape (M,)
Input array.
ar2 : array_like
The values against which to test each value of `ar1`.
assume_unique : bool, optional
If True, the input arrays are both assumed to be unique, which
can speed up the calculation.  Default is False.

Returns
-------
mask : ndarray of bools, shape(M,)
The values `ar1[mask]` are in `ar2`.

--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Notes
-----
`in1d` can be considered as an element-wise function version of the
python keyword `in`, for 1D sequences. ``in1d(a, b)`` is roughly
equivalent to ``np.array([item in b for item in a])``.

Examples
--------
>>> test = np.array([0, 1, 2, 5, 0])
>>> states = [0, 2]
array([ True, False,  True, False,  True], dtype=bool)
array([0, 2, 0])

"""
if not assume_unique:
ar1, rev_idx = np.unique(ar1, return_inverse=True)
ar2 = np.unique(ar2)

ar = np.concatenate( (ar1, ar2) )
# We need this to be a stable sort, so always use 'mergesort'
# here. The values from the first array should always come before
# the values from the second array.
order = ar.argsort(kind='mergesort')
sar = ar[order]
flag = np.concatenate( (equal_adj, [False] ) )
indx = order.argsort(kind='mergesort')[:len( ar1 )]

if assume_unique:
return flag[indx]
else:
return flag[indx][rev_idx]

def union1d(ar1, ar2):
"""
Find the union of two arrays.

Return the unique, sorted array of values that are in either of the two
input arrays.

Parameters
----------
ar1, ar2 : array_like
Input arrays. They are flattened if they are not already 1D.

Returns
-------
union : ndarray
Unique, sorted union of the input arrays.

--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Examples
--------
>>> np.union1d([-1, 0, 1], [-2, 0, 2])
array([-2, -1,  0,  1,  2])

"""
return unique( np.concatenate( (ar1, ar2) ) )

def setdiff1d(ar1, ar2, assume_unique=False):
"""
Find the set difference of two arrays.

Return the sorted, unique values in `ar1` that are not in `ar2`.

Parameters
----------
ar1 : array_like
Input array.
ar2 : array_like
Input comparison array.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation.  Default is False.

Returns
-------
difference : ndarray
Sorted 1D array of values in `ar1` that are not in `ar2`.

--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Examples
--------
>>> a = np.array([1, 2, 3, 2, 4, 1])
>>> b = np.array([3, 4, 5, 6])
>>> np.setdiff1d(a, b)
array([1, 2])

"""
if not assume_unique:
ar1 = unique(ar1)
ar2 = unique(ar2)
aux = in1d(ar1, ar2, assume_unique=True)
if aux.size == 0:
return aux
else:
return np.asarray(ar1)[aux == 0]
```